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DAJA4591M0319
Thursday, September 26, Afternoon/Evening Session

7 Open Session
(Elias Houstis / Bo Einarsson)

14:00 Johan A van Hulzen NL  Automated Generation of Optimized Nu-

. merical Code for Jacobians and Hessians
14:20  Discussion

14:30  Niklas Holsti SF Transcript Editing, A Simple User Inter-

face Tool
14:50 Discussion

15:00  Allan Bonadio USA Mathematical User Interfaces for Graphi-

cal Workstations
15:20 Discussion

15:30 Break

16:00 David Gay USA Toward an Environment for Mathematical
Programming

16:20 Discussion

16:30  John Reid UK  The Fortran 90 Standard

16:45 Discussion

16:50 General Discussion

17:00 Close
Demonstrations
19:00  Elias Houstis USA Parallel Ellpack (Sun Sparc)

19:20  Siu Shing Tong USA Integration of Symbolic and Numerical
Methods for Optimizing Complex Engi-
neering Systems (Video tape)

19:30 Dominique Duval F Examples of Problem Solving Using Com-
puter Algebra (IBM RT/PC)

19:50  Kevin Broughan NZ  SENAC: Lisp as a Platform for Construc-
ting a Problem Solving Environment (Sun

Sparc)

20:10  Niklas Holsti SF Transcript Editing, A Simple User Inter-
face Tool (IBM PC)

20:30  Allan Bonadio USA Mathematical User Interface for Graphi-

cal Workstations (Macintosh)

The presentation on Friday 09:40 by I A Nicolayev (SU)

was replaced by one by J R Rice (US) on research directions
of the National Science Foundation (US) with respect to
computer science, essentially within the area covered by
the conference.




I

INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING

IFIP WG 2.5 Working Conference 6

Programming Environments for High
Level Scientific Problem Solving

Karlsruhe
September 23 — 27, 1991

Co-chairs of the Program Committee:

L Acunxu___l’or
NTI3 GRAAL : U
PYiC T4B G ;

Upanaoneed O !

i
Justifisacton

E

By
Distributies/ |
Availability Codes |

i
t
'
t

Javerl awd/or

Dist speeial

||

Bo Einarsson, Lloyd D. Fosdick
Co-editors:

Patrick Gaffney, Elias Houstis
Local Organization: Ulrich Kulisch, Adolf Schreiner

The meeting is co-organized by the Institute for Applied Mathematics of

Karlsruhe University.




Edited by: Gerd Bohlender, Universitat Karlsruhe, September 9, 1991

Front cover: symbols of IFIP and Karlsruhe University,
view of Karlsruhe in 1739 (engraving by Christian Thran)

Printed and bound by: SCHNELLDRUCK GRASSER
7500 Karlsruhe 1, Humboldtstrae 1, Tel. 0721/615050



Scientific Program,
Registration and Travel Information

as of September 9, 1991

Table of Contents

page

Summary 5
Scientific Program 7
List of Sessions 7
Monday Sessions 8
Tuesday Sessions 10
Wednesday Session 12
Thursday Sessions 13
Friday Session 15
Travel Information 16
Arrival by Plane and Train 16
Location of Conference Auditorium 17
Public Transport in Karlsruhe 17
Parking in Karlsruhe 18
Hotel Reservation 18
Meals 19
Additional Information 20
Social Program ‘ 21
General Information 23
Conference Address 23
Technical Organization 23
Registration 23
Conference Office 24
Badges 24
Maps 25




IFIP

International Federation for Information
Processing

[FIP WG 2.5 Working Conference 6

Programming Environments for High
Level Scientific Problem Solving

Karlsruhe, September 23 - 27, 1991

Program committee: Michel Bercovier, Jacques Calmet, Ifay Chang, Bo
Einarsson, Stuart Feldman, Brian Ford, Lloyd Fosdick, Pat Gaffney, Morven
Gentleman, Elias Houstis, Ulrich Kulisch, John Rice, Adolf Schreiner, Hans
Stetter, Claus Unger, Mladen Vouk.

The meeting is co-organized by the Institute for Applied Mathematics of
Karlsruhe University.

Co-chairs of the Programm Committee: Bo Einarsson, Lloyd D. Fosdick

Co-editors: Patrick Gaffney, Elias Houstis
Local Organization: Ulrich Kulisch, Adolf Schreiner
Opening of Conference: Monday, September 23, 9:30

Closing of Conference: Friday, September 27, 12:30

Conference auditorium: NTI in Nachrichtentechnisches Institut,

corner of Engesserstrasse and Zirkel
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two workstations for demonstrations in the auditorium are provided by Sun
Microsystems,

a room for the conference secretariate on Sunday is provided by Hotel Kais-
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Scientific Program

(as of September 5, 1991)

Sessions

For each session the responsible / assistant are given. They will also be
session chairman / discussant.

Monday, September 23
9:30 - 12:30 1. Introduction
Lloyd Fosdick / Mladen Vouk
14:00 - 18:00 2. Intelligent Assistants
John Rice / Patrick Gaffney

Tuesday, September 24
9:00 - 12:30 3. Mathematical Methods
Jacques Calmet / Hans Stetter
14:00 - 18:00 4. Systems and Tools
Mladen Vouk / [Stu Feldman] / Theodorus Dekker

Wednesday, September 25
9:00 - 12:30 5. System Engineering I
Stu Feldman / [Claus Unger|

Thursday, September 26
9:00 - 12:30 6. Interaction and Visualization
Morven Gentleman / [Ifay Chang]
14:00 - 21:30 7. Open Session
Elias Houstis / Bo Einarsson

Friday, September 27
9:00 - 12:30 8. System Engineering II
Michel Bercovier / Brian Ford




Monday, September 23, Morning Session

1 Introduction
(Lloyd Fosdick / Mladen Vouk)

09:30

09:45

10:30
10:40
11:10

11:35
11:40
12:05
12:15
12:30

Bo Einarsson
Ulrich Kulisch
Lloyd D Fosdick
Stu Shing Tong

Discussion
Break
W M Gentleman

Discussion

Paul C Abbott
Discussion
Session Discussion

Lunch

D
USA
USA

CDN

GB

Opening

Welcome

Program

Key Note: Integration of Symbolic and
Numerical Methods for Optimizing Com-
plex Engineering Systems

Symbiotic Computation: Opportunities
and Complications

Problem Solving Using Mathematica




14:00

14:30
14:40

15:10
15:20
15:50
16:20
16:30

17:00
17:10
17:20

Siegfried Rump

Discussion
Willi Schoenauer

Discussion

Break

John A Nelder
Discussion
Donald F Boisvert

Discussion
Session Discussion
Poster Session

Dynamic selection of algorithms.
Use of knowledge bases for problem solving.
Accuracy control and estimation, self-validating systems.

D

D

GB

USA

r

Monday, September 23, Afternoon Session

2 Intelligent Assistants
(John Rice / Patrick Gaffney)

Accuracy Control and Estimation, Self-
Validating Systems and Software Environ-
ments for Scientific Computation

Polyalgorithms with Automatic Method
Selection for the Iterative Solution of Li-
near Equations and Figenproblems

The Computer as Statistical Assistant

Toward an Intelligent System for Mathe-
matical Software Selection




Tuesday, September 24, Morning Session

3 Mathematical Methods
(Jacques Calmet / Hans Stetter)

Graphical, symbolic and numerical methods.

09:00

09:30
09:40

10:10
10:20
10:50

11:20
11:30

12:00
12:10
12:30

Masaaki Shimasaki J

Discussion

Vladimir P Gerdt

Discussion
Break
Bruno Buchberger

Discussion
Dominique Duval

Discussion

Session Discussion
Lunch

SU

A

Fractals in Quaternions and their Appli-
cation to Computer Graphics

Computer Algebra Tools for Higher Sym-
metry Analysis of Nonlinear Evolution
Equations

Groebner Bases in Mathematica: Enthu-
siasm and Frustration

Examples of Problem Solving using Com-
puter Algebra
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Tuesday, September 24, Afternoon Session

4 Systems and Tools
(Mladen Vouk / [Stu Feldman] / Theodorus Dekker)

Mixed language programming.

Declarative, dynamic and visual programming systems.
Tools for integration and portability.

Tools for performance measurement and evaluation.

14:00  Stuart Feldman USA Environments for Large-Scale Scientific
Computation

14:30  Discussion

14:40 Hans Zima A Software Tools for Parallel Program De-
velopment

15:16  Discussion

15:20  Break

15:50 Wayne R Dyksen USA Fortran Interface Blocks as an Interface
Description Language for Remote Proce-

dure Call
16:20  Discussion

16:30  (Nobutoshi Sagawa) IRL An Integrated Problem Solving Environ-
Neil Hurley ment for Numerical Simulation of Engi-

neering Problems
17:00  Discussion

17:10  Session Discussion
17:20 Demonstrations

Reception
19:00 Reception in the Casino of the Constitu-
tional Court
11




Wednesday, September 25, Morning Session

5 System Engineering 1
(Stu Feldman / [Claus Unger])

Integration of numerical, symbolic and graphical methods.

Integration of libraries and multiple problem solving systems.

Efficient utilization of computing resources, parallel and distributed archi-
tectures, graphics engines.

09:00  Michael Clarkson CDN Expert System as an Intelligent User In-

terface for Symbolic Algebra
09:30  Discussion

09:40  Alfonso Miola I Design and Implementation of Symbolic

Computation Systems
10:10  Discussion

10:20  Break

10:50  Elias Houstis USA Parallel Ellpack

11:20  Discussion

11:30  Jim Purtilo USA Dynamic Software Reconfiguration Sup-

ports Scientific Problem Solving Activities
12:00 Discussion

12:10  Session Discussion
12:30 Lunch

Excursion

14:00 Excursion and Banquet in the Baden-Baden area
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Thursday, September 26, Morning Sersion

6 Interaction and Visualization
(Morven Gentleman / [Ifay Chang])

Techniques for problem description.

Graphical presentation of results.
Multiple modes of 1/O (digital, analog, graphical, audio,...).

User interaction and feedback.

09:00

09:30
09:40

10:10
10:20
10:50

11:20
11:30

12:00
12:10
12:30

Yukio Umetani

Discussion
Eric Giosse

Discussion

Break

(Frans C A Groen)
Hans J W Spoelder

Discussion
Peter M Dew

Discussion
Session Discussion
Lunch

USA

NL

GB

Visual DEQSOL: A Visual and Interactive
Environment for Numerical Simulation

Display of Functions of Three Space Va-
riables and Time Using Shaded Polygons
and Sound

Distributed Visual Programming Envi-
ronment: an Attempt to Integrate Third
Generation Languages with Advanced
User Environments

Visualization and its Use in Scientific
Computation

13




Thursday, September 26, Afternoon/Evening Session

7 Open Session
(Elias Houstis / Bo Einarsson)

14:00-17:30 Afternoon Session

Johan A van Hulzen NL.  Automated Generation of Optimized Nu-
merical Code for Jacobians and Hessians

Niklas Holsti SF Transcript Editing, A Simple User Inter-
face Tool

Allan Bonadio USA Mathematical User Interfaces for Graphi-
cal Workstations

Additional papers to be announced later.

19:00-21:30 Evening Session.
To be announced later.
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Friday, September 27, Morning Session

8 System Engineering 11
(Michel Bercovier / Brian Ford)

09:00

09:30
09:40

10:10
10:20
10:50
11:20
11:30

12:00
12:10
12:20
12:30

Kevin Broughan NZ

Discussion

1 A Nicolayev SU

Discussion

Break

Colin W Cryer D
Discussion

Steve J Hague GB

Discussion
Session Discussion

Final Discussion
Close

SENAC: Lisp as a Platform for Construc-
ting a Problem Solving Environment

Complex Application of Graphical, Sym-
bolic and Numerical Methods in Packages

for Solving Mathematical Modeling Pro-
blems

The ESPRIT Project FOCUS

Use of Knowledge Bases for Problem Sol-
ving —~ The FOCUS Approach

15




Travel Information

IFIP WG 2.5 Conference Programming Environments for High Level
Scientific Problem Solving will be held at Karlsruhe University. Karls-
ruhe is a town with 280 000 inhabitants in the south-west of Germany. It is
situated in the valley of the river Rhine, about 60 kilometers south of Hei-
delberg and 60 kilometers north-east of Strasbourg (France). In Karlsruhe,
Baron von Drais invented the wooden bicycle and Heinrich Hertz discovered
the electro-magnetic waves. Today, Karlsruhe is the seat of the Federal Su-
preme and Constitutional Courts.

The conference will begin Monday morning, September 23, and will end
Friday noon, September 27. Registration will be held Sunday, September 22
and Monday morning, September 23.

Arrival by Plane and Train

Karlsruhe can be easily reached by public transport since intercity trains
from Frankfurt to Basel (Switzerland) arrive at Karlsruhe every hour. The
easiest way to get to Karlsruhe from overseas is:

o Fly to Frankfurt; from the baggage claim you can proceed to the un-
derground railway station

o Take local train “S-Bahn” to Frankfurt central station (“Hauptbahn-
hof”, “Hbf”). Alternatively take “S-Bahn” to Mainz. Important:
do not enter S-Bahn without a ticket, no tickets are sold on these
trains!

e From Frankfurt or Mainz, take intercity/eurocity train to Karlsruhe
via Mannheim

Remarks: For most trains from Frankfurt central station to Karlsruhe, you
have to change in Mannheim. For some trains you have to pay an increased
“intercity express” fare.

Timetable: The trip from Frankfurt airport to Karlsruhe takes approxima-
tely 90 minutes; trains leave every hour until about 22:00.

From Frankfurt to Karlsruhe: the trip from the airport to Frankfurt
central station takes 10 minutes. From there intercities usually leave at xx:46
and arrive in Karlsruhe 72 minutes later at xx+1:58. The regular timetable
starts at 7:46 and ends at 21:46 with some gaps (7:46, 10:46,...,19:46 not

16




on Sundays, 19:46, 20:46 not on Saturdays, etc.); there are additional trains
which do not fit in the scheme.

From Mainz to Karlsruhe: the trip from the airport to Mainz takes 24
minutes. From there intercities leave usually at xx:44 and arrive in Karlsruhe
74 minutes later at xx+1:58. The regular timetable starts at 7:44 and ends
at 22:44 with some gaps (e.g. 20:44 and 22:44 not on Saturdays); there are
additional trains which do not fit in the scheme.

From Karlsruhe to Frankfurt airport: most intercities leave Karlsruhe
at xx:59. The regular timetable starts at 5:59 and ends at 20:59 with some
gaps (5:59 and 7:59 not on Sundays, 9:59 not on Saturdays and Sundays).
Usually, you can stay on the train till Mainz or change at Mannheim to the
train to Frankfurt central station. From Mainz or Frankfurt, take S-Bahn to
the airport. Via Frankfurt the trip takes about 95 minutes, via Mainz about
115 minutes. There are additional trains which do not fit in the scheme.

Railway tickets can be bought at Frankfurt airport or they can be ordered
in advance at a reduced rate by using the KTS ticket ordering form (only
in connection with a room reservation). Please, send this form and your
payment directly to Karlsruher Tagungs- und Touristikservice, as in-
dicated on the form; do not send the form to the conference address, do not
include that payment in your registration fee.

Alternative airports are Stuttgart, Basel (Switzerland), or Strasbourg
(France).

Location of the Conference Auditorium

The campus of Karlsruhe University is north-east of the town center, about 10
minutes by foot. The conference auditorium NTI of “Nachrichtentechnisches
Institut” is situated on the campus at the corner of Engesserstrasse and
Neuer Zirkel (marked [u] in building 30.10 on campus map). It is a five
minutes’ walk north of tramway station Berliner Platz / Universitat and
about seven minutes from Marktplatz.

Public Transport in Karlsruhe

Most places of interest (University campus, town center) are within a walking
distance. In addition, Karlsruhe has an efficient public transport system:
tramways on the main lines, connecting busses on the less important lines.

17




Regular fares (as of September 1, 1991) for tramways and busses are DM 2.50
for a one way ticket, DM 7.00 for 4 trips, and DM 6.00 for a 24 hour ticket (any
number of trips within 24 hours, valid for 2 adults plus 2 children). Special
tickets can be bought from Karlsruher Tagungs- und Touristikservice
at the reduced rate of DM 2.50 per day per person by using the KTS ordering
form (Note: this reduced rate is only available in connection with a room
reservation, see the remarks for railway tickets above).

Note: When first entering a tramway or bus in Karlsruhe, you have to insert
your ticket into the yellow box in order to stamp the time on it. Your ticket
1s invalid without a time stamp.

Parking in Karlsruhe

The campus of Karlsruhe University can only be entered by car with a special
permit, which can be obtained in the conference office. Note: when parking
on the campus, please display this permit in your car.

In addition, there is a big free parking on Adenauerring, on the north-east
of the campus. From there you can walk to the auditorium in about 10 to
15 minutes. There are several car parks in the west and in the south of the
campus. Prices are about DM 1.50 per hour or DM 13.56 per day; car parks
usually are closed some hours during the night.

Hotel Reservation

Important: There are other meetings in Karlsruhe in the same week with
several hundred participants; please make your hotel reservation as
soon as possible!

An accomodation guide with a list of hotels in Karlsruhe and a town map
are enclosed; please note: prices in this guide are of 1989 and have increased
in the meantime by 10 to 20 percent. Please, make a hotel reservation (and,
if desired, a ticket reservation) by sending the KTS hotel reservation form
directly to Karlsruher Tagungs- und Touristikservice. You can indicate
special wishes (e.g. location of the hotel) on your room reservation card.

Hotel reservation is free of charge, no deposit is required. If you order railway
or tramway tickets with the KTS reservation form, please pay by attaching
a check in Deutschmark drawn on a German bank; do pot send this form to
the conference address, do not include that payment in your registration fee.

18




Alternatively, you can select a hotel from the accomodation guide as well
and make a reservation directly with the hotel. Kaiserhof and Kiibler, for
instance, are nice hotels nearby. The area code for phone calls from foreign
countries is +49 721. For several hotels the fax number is included in the list
as well. For mail to Karlsruhe, please add the zip code D-7500 in front of the
town. For Karlsruher Tagungs- und Touristikservice the full address
is

Address: KTS
Karlsruher Tagungs- und
Touristikservice
Verkehrsverein Karlsruhe e. V.
Bahnhofplatz 6
D - 7500 Karlsruhe 1
Germany

Phone: +49 721 3553 0

Fax: +49 721 3553 43

Meals

In most hotels, breakfast buffet is included in the hotel rate. Lunch can be
taken at several places:

o The Mensa and Cafeteria of Karlsruhe University are on the east
of the campus, about a 5 - 10 minutes’ walk from the auditorium.
Prices for guests are DM 7.70 for a menu (including soup and des-
sert). A choice of several varying menus is offered on Monday - Friday.
Small dishes are available in the self service cafeteria starting at about
DM 3.00.

o There are dozens of small restaurants on Kaiserstrasse and its side roads
within about 10 minutes from the auditorium. A map of restaurants
will be available in the conference office.

¢ A limited number of tables will be reserved for conference participants
in Gastdozentenhaus which is situated on campus in the building
next to the conference auditorium. These tables are reserved for spea-
kers and session chairmen / discussants who are invited for lunch on
the day before their session. Monday speakers, session chairmen / dis-
cussants are invited on Friday.

19




Additional Information

Summer 1991 was dry and hot in Karlsruhe (the local newspaper said it was
the driest August since 1876). The weather in the end of September in
Karlsruhe is frequently still warm and friendly. Street cafés are still open in
the pedestrian zone. However, the evenings may be cool and there may be
some rain. Summertime (daylight savings time) ends on Saturday night,
September 28.

Credit cards are by far not as common in Germany as in e.g. France or
the United States. Most smaller shops and restaurants accept only cash or

eurocheque, no foreign currency. You should exchange some money, e.g. at
Frankfurt airport.

English is more or less understood by many Germans. But apart from
airporis, there are nearly no signs or other information in English.

Opening hours of shops and banks are regulated by law. Only shops in rail-

way stations, airports, and gas stations are allowed to be open after regular
shopping kours

open on ... Mon-Wed&Fri Thu Sat Sun
shops 9:00 - 18:30 | 9:00 - 20:30 | 9:00 - 14:00 closed
banks 8:30 - 16:00 | 8:30 - 18:00 closed closed

at Karlsruhe

central station:

tourist info. 8:00 - 19:60 | 8:00 - 19:00 | 8:00 - 13:00 closed
shops 7:30 - 20:30 7:30 - 20:30 | 7:30 — 20:30 | 7:30 - 20:30
bank 7:00 - 20:00 | 7:00 - 20:00 | 7:00 - 20:00 | 9:00 — 13:00

20




Social Program

The following social events are envisaged. Times of departure are, however,
still subject to change. Please indicate your interest in particular events on
your registration form.

Sunday, September 22, 12:00 - 21:00

Welcome in the Hotel Kaiserhof, Am Marktplatz. The conference office will
be located there. Dining facilities are available.

(Not included in registration fee)

Monday, September 23, 20:00

Concert of Virtuosi Saxoniae with Ludwig Giittler (trumpet) in the Town
Hall, Brahms-Saal.

(Not included in registration fee; the price is DM 46.00)

Tuesday, September 24, 19:00

Get together party with wine, cheese and salad bar at the Casino of the
Constitutional Court, close to Karlsruhe castle.

(Included in registration fee for participants and accompanying persons)

Wednesday, September 25, 14:00 — 23:00

Conference banquet at Baden-Baden (about 30 minutes by bus from Karls-
ruhe). Busses will leave from Karlsruhe at 14:00; in Baden—-Baden you can
join a guided city walk and go to the top of mountain Merkur by cable
car. In the evening at 19:00, Banquet in Hotel Plattig in Black Forest near
Baden-Baden. Busses will leave back to Karlsruhe at 21:00 and 23:00, so
participants have an opportunity to revisit Baden-Baden after the banquet
(bus trip and banquet: included in registration fee for participants and ac-
companying persons).

Meeting point: near NTI auditorium.

Guided tours of the Computing Center of Karlsruhe University will be ar-
ranged during the conference.

In addition to these events, several excursions will be offered for accom-
panying persons. These trips have to be paid for individually; please do
not include the payment in your registration fee. However, please help us
in planning these excursions by informing us as soon as possible about the
estimated number of participants.
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The following excursions are planned (leaflets with detailed information are
available in the conference office):

¢ Monday, September 23, 11:00 — 12:30
After the opening of the conference, all accompanying persons are in-
vited by Ursula Kulisch for Morning Coffee in Gastdozentenhaus (the
building next to the auditorium).

e Monday, September 23, 14:15 — 18:30

Walking tour to Staatliche Majolikamanufaktur, manufacture of
pottery, statues, decorated tiles. (Guided tour of the factory is about
DM 3.00 - DM 6.00 depending on the number of participants).
Meeting point: terrace on north side of Karlsruhe Castle (Schloficafé).
An exhibition of Russian and Soviet china from St. Petersburg / Lenin-
grad is opened on Tuesday, September 24 in Badisches Landesmuseum
in Karlsruhe Castle.

e Tuesday, September 24, 10:00 — 15:00
Trip by tramway to Bad Herrenalb, a small spa in the northern part
of Black Forest (tramway ticket DM 6.00).
Meeting point: tramway station near pyramid on Marktplatz.

e Wednesday, September 25, 10:00 — 11:30
Walking tour to the Art Gallery Staatliche Kunsthalle. (Admit-
tance is free; guided tour: DM 5.00)
Meeting point: 9:45 at pyramid on Marktplatz or 10:00 at main ent-
rance of Kunsthalle, Hans-Thoma-Strasse.

e Thursday, September 26, 12:30 — 19:00
Tour by train to Pforzheim which is famous for its manufacture of
jewelry; visit of Museums for Jewelry and Manufacture of Je-
welry. (Trip approximately 30 kilometers by train, price about
DM 20.00 including railway ticket, admittance fee and guided tour
of the museum)
Meeting point: tramway station near pyramid on Marktplatz.

The trips to Heidelberg and Deidesheim unfortunately had to be cancelled.
However, we will give you information about Heidelberg so that you can
easily make the trip on your own, for example on Friday. There is a direct
railway line (57 kilometres, 30 - 60 minutes by train).

22




General Information

Conference Address (Local Arrangements)

Address: IFIP WG 2.5 Conference 1991
Prof. Ulrich Kulisch
Institut fir Angewandte Mathematik
Universitat Karlsruhe
Kaiserstrasse 12
D-7500 Karlsruhe
Germany
Phone: +49 721 608 2680 (secretariate in institute)
+49 721 608 2839 (Dr. Gerd Bohlender)
Conference phone:  +49 721 608 2696 (conference secretariate at
NTI auditorium, Monday, Sept. 23 — Friday, Sept. 27)

Fax: +49 721 695283
Email: AE15@DKAUNI2.BITNET (Dr. Gerd Bohlender)
(Email, X.400: ael5@ibm3090.rz.uni-larlsruhe.dbp.de )

Technical Organization (Computers, Demonstrations, etc.)

Address: IFIP WG 2.5 Conference 1991
Prof. Adolf Schreiner
Rechenzentrum
Universitat Karlsruhe

Kaiserstrasse 12
D-7500 Karlsruhe

Germany
Phone: +49 721 608 3754 (secretariate)

+49 721 608 2068 (Dipl.-Ing. Reinhard Strebler)
Fax: +49 721 32550
Email: RZ06@DKAUNI2.BITNET (Prof. Schreiner)

RZ40@DKAUNI2.BITNET (Dipl.-Ing. R. Strebler)

Registration

Please use the enclosed registration form and send it by air mail to the
conference address. The registration fee is DM 450 for participants and
DM 120 for accompanying persons. Registraticns are supposed to arrive

23




before June 30, 1991. Later registrations will be charged with additional
DM 50.00 per person. Please pay the appropriate amount in Deutschmark
(abbreviated DM in Germany, or DEM in international usage)

o by sending a bankers check in Deutschmark, drawn on any German
bank to the conference address (please indicate on your check “IFIP
WG 2.5 Conference”), or

e by remittance on the account of “Karlsruher Hochschulvereinigung”,
account number 400 242 91 00, Baden-Wirttembergische Bank, Karls-
ruhe, SWIFT-Code BW BK DE 6K 660 (in Germany: Bankleitzahl 660
200 20). Please indicate on your remittance “IFIP WG 2.5 Confe-
rence”,

All payments have to be free of charges to the local organizer. We are sorry
that we cannot accept credit cards or personal checks.

Cancellation of Registrations: Cancellationsin writing will be honored,
less 20% handling charge, prior to September 1, 1991. After this date, partial
refunds will be made at the discretion of the conference organizers.

Conference Office

On Sunday, September 22, 12:00 — 21:00, the conference office will be located
in Hotel Kaiserhof, Marktplatz, phone +49 721 26615.

During the conference, the conference office will be located in front of audi-
torium NTT (marked [u]in building 30.10 on the campus map). On Monday
morning, September 23, the office will open at 8:30.

The phone number of the conference office is +49 721 608 2696; email is
available in the conference office; fax (number +49 721 695283) is available
in the Mathematics building, 100 metres from the auditorium.

Badges
white badges: conference participants
.. with IFIP symbol: ... WG 2.5 members
yellow badges: local persons who assist in organizing
the conference
pink badges: accompanying persons

Accompanying persons can use their badges during social events, if they like.
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Integration of Symbolic and Numerical Methods for
Optimizing Complex Engineering Systems

Siu Shing Tong
Corporate Research and Development
General Electric Company
PO Box 8
Schenectady, NY 12301

A new software system called Engineous combines symbolic and numerical methods
for the design and optimization of complex engineering systems. Engineous combines
advanced computational techniques — genetic algorithms, expert systems, and
object-oriented programming — with conventional methods — numerical
optimization and simulated annealing, to create a design optimization environment
that can be applied to computational models in various disciplines. Engineous has
produced designs with higher predicted performance gains than current manual
design processes, on average a 10-to-1 reduction of turnaround time, and has
yielded new insights into product design. It has been applied to the design of an
aircraft engine turbine, molecular electronic structure, cooling fan, DC motor,
electrical power supply, nuclear fuel rod, and the concurrent aerodynamic and
mechanical, preliminary and detailed design of 3D turbine blades.
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Introduction

In today’s dynamic market environment, industry faces the challenge of timely develop-
ment of new products to meet market needs. New, complex computational codes that take
advantage of increasingly faster and cheaper computing power are being used routinely for
new product design. One obstacle to producing good new designs quickly, however, is the
scarcity of engineers who combine an understanding of product design with an ability to rap-
idly learn how to use these new codes. At present, the few who do combine these skills must
still go through the tedious process of manually iterating analysis codes to obtain optimum
design. An additional obstacle results from the need for a large group of engineers from
various disciplines, with diverse expertise, to work together. The difficulty of communica-
tion between these engineers has created a bottleneck in developing new products. Partly be-
cause of these obstacles, it often takes years to bring a product from concept to market.
Automating product development to reduce development cycle time is now a priority task
for many industrial organizations.

Numerical and Symbolic Optimization Methods

The use of computers to search for an optimum configuration for a complex system is, of
course, nothing new. Numerous optimization techniques have been developed and demon-
strated successfully on many relatively simple problems with few parameters and simple
analytical models. These techniques can be categorized as numerical or symbolic.

Numerical Methods

Numerical methods treat all design variables as independent numbers without regard to
their characteristics and significance, often making use of mathematical principles such as
gradients to guide the search. Examples of numerical methods include numerical optimiza-
tion, simulated annealing, and inverse method.

Numerical optimization. A substantial amount of work has been done on numerical op-
timization over the past twenty years. For nonlinear constrained optimization, the tech-
niques of sequential linear programming, sequential quadratic programming, modified
method of feasible directions, and the generalized reduced gradient method have emerged
as popular numerical optimization techniques [Gabriele, 1988; Vanderplaats 1984, 1988).
These optimization techniques use local numerical gradient approximations to determine
how to move from one trial solution to another in order to obtain maximum gain of the ob-
jective function. They have been successfully applied to optimization problems in many do-
mains [Vanderplaats, 1984]. The advantages of numerical optimization are its
mathematical underpinnings, general applicability to engineering designs, and wide applica-
tion base. The disadvantages are its inability to exploit domain knowledge, extreme sensitiv-
ity to both problem formulation [Gero, 1988) and algorithm selection, the large amount of
computational effort required, a tendency to be trapped in local optima, and the assump-
tions of both design variable independence and continuity within the parameter space.
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Simulated annealing [Kirkpatrick, Gelatt, and Vecchi, 1981; Ban den Bout]. This
method got its name from the analogy of growing crystal by gradually lowering the energy
level to allow the element to align itself through random motions. The controlled random
process helps avoid the problem of being trapped in a local optimum in a hill-climbing pro-
cedure. This method often requires many iterations.

Inverse method. For some special problems it is possible to invert the governing equa-
tions so that the configuration satisfying certain design objectives is the solution of the com-
putational code. Some examples are shown in Giles, Drela, and Thompkins [1985] and Tong
[1984].

Symbolic Methods

Replacing a total reliance on mathematics, symbolic methods emulate human ap-
proaches and attempt to make use of accumulated knowledge — either explicitly input by
humans or generated from the iteration process — to reduce the number of iterations re-
quired. The characteristics and significance of various parameters are often retained and
explored. Examples of symbolic methods include expert systems, heuristic search, and ge-
netic algorithms.

Expert systems. Expert systems codify domain-specific knowledge in the form of IF
THEN rules. Expert systems have been used in designs in many domains, including refrig-
erator fans [Tong, 1986], VLSI circuits [Jabri, 1987], and bridges [Adeli, 1986]. The main
advantages of using expert systems are the capabilities of using engineers’ experience to
obtain good solutions rapidly and to trace the rationale that was used in the process. Howev-
er, the applicability of each system is generally restricted to a very narrow domain, and the
development effort can be prohibitively expensive for complex problems. Often, attempts to
develop such systems fail because of the inability of humans to express all of their knowl-
edge and because of the errors made in the transfer process from human to computer
[Zhou, 1987].

Heuristic search {Winston, 1984]. Heuristic search techniques keep a record of the past
solution path and look ahead at possible future moves, so that iterations can be back-
tracked if problems arise and planned ahead to minimize bad moves. They rely on common
sense logic but generally have the same problems as numerical optimization such as dealing
with local optima.

Genetic algorithms. Genetic algorithms take an initial set, or population, of design
points and manipulate that set with the genetic operators of selection, crossover, and muta-
tion to arrive at an optimal design. These general purpose search strategies attempt to strike
a balance between exploration and exploitation of a parameter space [Holland, 1975]. They
are based on the heuristic assumptions that the best solutions will be found in regions of the
parameter space containing relatively high proportions of good solutions and that these re-
gions can be explored by genetic operators. The advantages of genetic algorithms are that
they search from a set of designs and not from a single design, they are not derivative based,
they work with discrete and continuous parameters, and they explore and exploit the param-
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eter space [Goldberg, 1989]. The major disadvantage is the excessive number of runs of the
design code required for convergence. Another disadvantage is that once a genetic algorithm
has found a good solution it does not continue exploring around that solution to find a better
one.

Optimizing Complex Engineering Systems

Although optimization techniques are used widely on relatively simple problems, they
have had only limited application on complex engineering systems involving large-scale
analytical codes. Problems in this class have one or more of the following characteristics:

® Large numbers of parameters with mixed types (e.g., real, discrete, symbolic, vector)

® Analysis codes that are complex, CPU-intensive, difficult to use, and continuously
evolving

e Design parameters that have complicated relationships and cannot be manipulated
independently

® Design space with multiple optima

® Design concerns that cannot be modeled analytically

Multiple conflicting goals where the most advantageous trade-off is not obvious

® Usefulness of past experience and understanding of the physics of the problem in
helping the designer to locate a good solution quickly

Factors Limiting the Use of Optimization Tools

Because of a common misconception that the primary role of a designer is to obtain a de-
sign that is an “optimum” based on a numerical measure of merit, many computational de-
sign tools were written in a “black-box” manner. In reality, understanding the
characteristics of the design space and behavior of the proposed designs is as important to a
designer as obtaining the numerical optimum. In many problems, the operating conditions,
the choice of variables, the constraint boundaries, and the weighting factor of various objec-
tives are by no means exact. Information needs to be extracted beyond obtaining an “opti-
mum” design based on a static condition.

Even in an ideal situation where a numerically optimized solution is sought, the large
number of parameters plus the slow turnaround time of the analysis codes make it time-
consuming to search through the design space numerically without utilizing knowledge of
the domain.

The complexity of some of the optimization methods adds to the problem. Systems that
require frequent tuning of search parameters by users are merely transferring the iteration
of physical parameters to the iteration of numeric parameters unfamiliar to the designers.
Installation of new applications is often too labor-intensive, particularly for new technology
areas where analysis codes continue to evolve.
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Integration of Symbolic and Numerical Methods: Engineous Shell

The Engineous project was initiated at the GE Corporate Research and Development
Center in 1984 to develop a new approach to the design optimization of complex systems. It
was decided that an integrated environment with various facilities addressing the needs of
complex engineering system designs would be appropriate.

The basic approaches of Engineous are:

e Unified automation, optimization, and integration: A single system that has the capa-
bility to automate the design process by emulating designer engineers, to explore the design
space by numerical and symbolic optimization with or without any knowledge, and to com-
bine multidisciplinary design knowledge.

® Generic shell: Problem-specific information is separated from generic design func-
tions and is organized as knowledge bases.

¢ Integration of numerical and symbolic optimization technologies: To accommodate a
wide range of engineering problems having various combinations of continuous, discrete,
and symbolic parameters, different amount of design knowledge, and drastic differences in
the shape of the objective functions, a hybrid approach is provided.

® Rapid coupling to computational analysis codes without modification of the code.

The following description details the design automation, optimization, and integration
approaches used by Engineous.

Design Automation

The ability to manage the execution of a series of complex analysis codes without modi-
fication is an essential feature. The capabilities needed include:

® Preparation of input files and extraction of relevant output parameters

® Execution of analysis code and monitoring of its progress (e.g., abort if infinite loop)
® Management of the execution sequence

® Management of the data flow from one program to another

® Capture of design procedures (e.g., which parameters are allowed to vary given certain
conditions?)

o Capture of design parameter properties (e.g., what combinations of design parameters
are feasible? what are the significant digits?)

Engineous provides generic functionality to perform these tasks. Problem-specific infor-
mation for each application is captured in a Design Knowledge Base (KB) within Engineous.
Each application will have its own Design KB. The Design KB can be further decomposed
logically into: Design Parameter KB, Program KB, Program Sequence KB, and Design Rules
KB.
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Design Parameter KB. This KB classifies each parameter as belonging to one or more of
the 12 default types and attaches various properties to it. For example, Engineous attaches
current value, minimum increment, default value, etc., to a “design” parameter. The “mate-
rial” parameter is a symbolic type that can only take on a predefined set of symbolic values.
The tip-speed, rpm, and tip-diameter parameters are coupled parameters, whose relation-
ship is stored; any change in one parameter affects the others.

Program KB. This KB captures information on: (i) how to set up the input files, (ii) how
to execute an analysis code, (iii) what the code’s input and output parameters are, and
(iv) how to extract useful information from analysis output files for Engineous. The Pro-
gram KB also manages all pre- and post-processing programs that need to be executed for
each analysis code.

Program Sequence KB. This KB manages the execution sequence. It does not contain a
hardwired procedure but rather retains only the allowable transition between programs, i.e.,
for each program, what programs besides itself can follow it. Which program actually runs
is determined at run time depending on the parameters to be modified.

Design Rules KB. This KB captures human design knowledge in the form of logical
steps a designer would go through. Engineous uses a special rule syntax developed to repre-
sent analysis~-code-based iterative design knowledge. This knowledge representation is
based on the observation that only a limited set of goals, premises, and actions are used dur-
ing iterative design. An Engineous design rule might be “translated” into English as fol-
lows:

Goal: Toincrease X
Conditions: Y > 3 and
Z is not at its upper limit
Then try the following actions in order:
Action 1. Separable:
up Z by 10%,
down A by 2,
set Material to “inco718”,
vary B, C, and D
Action 2. Inseparable:
set Z to 50,
set Material to “tin125",
up C by 100,
vary C
Action 3. Sequential
vary B
vary C
vary B, C, and D

This rule is weighted at: 90




where X is an output parameter that may be a part of the optimization function (e.g., turbine
efficiency) or may have lower bounds (e.g., minimum flow angle), and Y and Z in the Condi-
tions part may be input or output parameters.

This rule will be fired under the following circumstances: to increase X has become part
of the current goal, the Conditions listed above are not violated, the weight of this rule is
higher than other rules that can be fired, and all actions in this rule are not currently sus-
pended because of previous repeated failures to increase X without violating other con-
straints. Engineous will try the actions in the order given.

The key word “separable™ tells Engineous to vary one or more parameters within the ac-
tion even if some others are not allowed to vary for this particular run. For Action 1, En-
gineous will increase Z by 10% of its current value if it has no upper bound, or 10% of the
difference between its current value and its upper limit. It will subtract 2 from A and set Ma-
terial to “inco718”. Then it will pass B, C, and D as variable parameters to the optimization
module in order to maximize X. If this action does not increase X without increasing the to-
tal amount of constraint violated, Engineous will restore the values of Z, A, and Material and
go to Action 2. No part of Action 2, which is an ‘‘inseparable” action, will be taken if any
one of its parameters is not allowed to vary or is suspended. “Sequential” actions are to be
taken one at a time. If an action is successsful, Engineous will repeat it until it reaches the
point of diminishing returns.

A key feature of Engineous is its capability of running CAE codes unmodified. CAE
codes are executed as subprocesses rather than the common practice of treating them as
subroutines because (1) source codes are seldom available for commercial codes, (2) in-
house codes are modified frequently and need to be able to “plug in” easily, (3) many CAE
codes will experience floating point exceptions during design exploration, and decoupling
the CAE codes will allow Engineous to recover and continue without aborting the whole de-
sign process, and (4) stand-alone CAE codes can examine various trial designs in parallel (a
utility was provided to distribute the analyses of trial configurations to a number of other-
wise ideal workstations). Information is passed between Engineous and CAE codes through
input/output files just as a human designer would pass it. An extensive utility was developed
to allow users to show Engineous by example how to edit input and extract output values.
Engineous can convert the examples to source codes without programming.

Design Optimization

The Engineous optimization module combines various optimization technologies in an
“interdigitized” manner, so that they are tightly coupled and switcned from one to another at
various stages of a single design run. (The term ‘‘interdigitized’’ is derived from the image
of two clasped hands with fingers intertwined.) Individually, each approach has advantages
and disadvantages. In combination, they complement each other in many ways.

Interdigitation of Expert Systems and Numerical Optimization

The design rule system shown in the previous section illustrates one way this interdigita-
tion is used, i.e., to supplement incomplete knowledge by numerical optimization. A number
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of key parameters (B, C, and D) were identified as strongly related to the goal but how to
change these parameters is not known (see Action 1). Therefore, they were passed to a nu-
merical optimization package called ADS (Automated Design Synthesis [Vanderplaats,
1988]) when this rule was fired to determine the best set of values in conjunction with
changes in other actions in this rule.

Another way to utilize this interdigitation is to use design knowledge to focus numerical
optimization to first vary parameters most likely to have an impact on the objective function
given certain conditions (see Action 3). It is often desirable to obtain the greatest gain in the
least number of analysis runs, particularly if there are many parameters. Preventing the nu-
merical optimization package from varying parameters known to have little impact for a giv-
en condition not only reduces the gradient calculation, but also reduces the approximation
error in the construction of search directions. Additional rules with more parameters but
lower weight may be added to search a larger parameter space when time permits.

The third common use of this concept is to prevent being trapped in local optima. If cer-
tain knowledge about the design space is available, the rule system can be used to jump
around design spaces (e.g., Action 2 in the rule example, ‘“‘up C by 100” plus *‘vary C”, will
repeatedly add 100 to the current C value and then ADS will vary C starting at the new value)
or move in a manner to avoid being trapped in constraint boundaries.

Interdigitation of Numerical Optimization and Genetic Algorithms

For design problems with no design knowledge available and with either multiple opti-
ma or complex constraints, numerical optimization and a genetic algorithm may be com-
bined to obtain a better global optimum with reasonable turnaround time. The
interdigitation reduces the high computational cost by entering the genetic algorithm only
after the more efficient exploration techniques of numerical optimization have been ex-
hausted. Once a better design is found by the genetic algorithm, the interdigitized technique
pursues this better design with numerical optimization techniques. When the numerical
techniques again arrive at an impasse, the genetic algorithm is reseeded with the best de-
signs discovered by numerical optimization and the past best designs from the previous ge-
netic algorithm population. This seeding provides “fertile” schemata for propagation and
combination within the genetic algorithm.

Customizable Interdigitation - Optimization Plan

In complex engineering systems, different optimization techniques are often needed in
different problems, or different parts of a problem, as well as at different stages of design
optimization (e.g., different techniques are used to meet constraints, obtain a local opti-
mum, and explore global optima). To deal with this issue, an “optimization plan” concept
was formulated by Powell [1990] to allow the interdigitation of a number of optimization
techniques, switching from one to another within a single design. The current choices of
techniques include expert systems, a collection of over 40 numerical optimization options,
genetic algorithms, and simulated annealing, as well as a number of heuristic search tech-
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niques. A default plan which was found to be generally robust for a wide range of problems
is provided. This plan makes use of design knowledge first and then gradually injects other
more exploratory techniques. The best design from the last optimization technique, genetic
algorithms, is used as a new starting design for the next run of the optimization plan (see
Figure 1). Whenever the genetic algorithm is entered on subsequent runs of the optimiza-
tion plan, the genetic algorithms population is reseeded. See Powell [1990] for a detailed
description of this concept.

Use design Expert system with numerical optimization
knowledge

Expert system with heuristic search

Heuristic search

::%T:i::ienl Numerical optimization with i?;g lilsmﬂ
Searty Sequential Quadratic Programming exhausted

Numerical optimization with Modified Method
of Feasible Directions

Genetic Algorithm

Figure 1: Default optimization plan

Design Integration

In order to perform design integration, a number of capabilities are required, for exam-
ple:

® Managing the relationship between parameters that are the interface between compo-
nents or disciplines (e.g., the rpm of two components sharing the same shaft should always
be the same)

® Allowing incremental building of a large application

® Facilitating the trade-off between components and between disciplines

These capabilities are provided in Engineous through the use of object-oriented pro-
gramming and a simple constraint propagation mechanism. All entities in Engineous — in-
cluding parameters, programs, design rules, search methods, etc. — are represented by
objects. The inherent mechanism provides an efficient way to manage the complexity of a
large-scale application. The simple constraint propagation is represented as methods acti-
vated by any change in parameters that are related to other parameters. A generic parame-
ter-studies object is provided to study trade-offs. It can be used: (i) simply to vary some
predefined parameters in a certain pattern, or (ii) to combine predefined patterns recursive-
ly to form a more complex study matrix, or (iii) at each complex matrix entry to redo the
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whole design optimization sequence with a new set of variable parameters. Some designers
view this parameter studies feature as very useful.

The current Engineous system contains approximately 80,000 lines of Common Lisp,
10,000 lines of Fortran, and 25,000 lines of C code. A C++ based implementation replacing
Lisp is being explored.

Historical Test Cases

A test set of six engineering optimization problems was used to validate that interdigita-
tion is a more efficient and robust optimization technique than either genetic algorithms or
numerical optimization used in isolation. The six engineering problems were part of an
original test set of 30 problems selected by Sandgren [1977] to analyze the performance of
25 numerical optimization codes. The numerical optimization codes performed poorly on
six test problems because of discontinuities, multimodality, gradient insensitivities, equality
constraints, and scaling problems. Since no optimization code could solve more than two of
these problems, Sandgren dropped the six engineering problems from his final comparative
analysis. These six problems were selected for this analysis because they are a difficult test
set, have known optima, and are representative of the types of parameter space problems
that are found in real-world engineering problems (e.g., discontinuities, multimodality).
The test problems are shown in Table 1.

The performance of Engineous using its interdigitation approach proved to be more ro-
bust and efficient than either numerical optimization using sequential quadratic program-
ming, numerical optimization using the modified method of feasible directions, or a genetic
algorithm used in isolation. (A detailed discussion of the performance of each technique on
each problem is in Powell [1990].) The number of the problems solved within 5000 runs of
the simulation code by the best numerical optimization technique, genetic algorithms and
Engineous are shown in Table 2. A 5000-run limit was established to simulate the limited
amount of time available for an engineer to obtain a design (e.g., a code that requires 10 sec-
onds to run can be optimized in 13 hours). Overall, Engineous outperformed numerical opti-
mization and genetic algorithms. For example, for a total relative error of .5, Engineous
solved 5 problems compared to 1 for numerical optimization and 1 for genetic algorithms.
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Problem S N J K | Feasible |ASC | AOC | Characteristics
Starting
Point
1. Chemical 3 9 0 Yes 0 0
Reactor #
Design
2. Gear Ratio Discontinuous
Selection #3 5 4 0 Yes 0 0 objective function
3 H;;i;g:‘?e o2 B |13 |0 No 3 11 |Small feasible region
Separation
4. Five-Stage Small feasible region
Membrane #22 16 19 0 No 7 16 Poor scalmg
Separation
5. Lathe 9 10 14 1 Yes 4 3
6. Waste Water | 430 Large number
Treatment 19 1 11| No 4 12 of nonlinear
equality constraints
S - Sandgren reference case J- Inequality constraints ASC-Active Side Constraints
N - Design variables K - Equality constraints ~ AOC-Active Output Constraints
Table 1: Characteristics of engineering test set
Optimization Approach
Relative Error E NO GA
5 5 1 1
25 4 1
1 3 1 1
075 2 1 1
05 1 0 1
01 0 0 1 (Sandgren #22) |
Relative error = I.f(x)-_f‘(l‘.'.) E - Engineous (no knowledge)
. ) NO - Numerical Optimization
where x* is optimal design GA - Genetic Algorithm
Table 2: Number of historical test problems solved for each
optimization approach for different relative errors
Engineous Applications
Back-to-back comparisons of designs using manual processes and designs using En-
gineous are available for a number of commercial product applications. The following ex-
11




amples are included here to indicate the levels of complexity Engineous is currently dealing
with as well as the impact it has had on productivity.

Aircraft Engine Turbine Preliminary Design

A modern high-bypass engine turbine consists of muitiple stages of stationary and rotat-
ing blade rows inside a cylindrical duct. A typical large transport engine turbine has 7 stages
and over 700 parameters in the preliminary design phase; 100 of the input parameters are
varied.

This application was implemented while Engineous was being developed. The time it
takes to install this application using the current version of Engineous is estimated to be
around one to two man-months.

A multi-stage low pressure (LP) turbine was selected as a good candidate for testing the
applicability of Engineous in a real-world design environment with a real design project. For
the particular turbine in question, a design optimization procedure had already been started
in which a designer was optimizing the turbine with a goal of 0.75% efficiency improvement.
The Engineous design was started in tandem with that work. The designer achieved a 0.5%
improvement in design in 10 man-weeks while the Engineous design achieved a 0.92% im-
provement in one week.

The power of interdigitation is also shown with this turbine design application. Figure 2
shows the partial result of a thorough study for a new 2-stage turbine design. Over 30 ADS
options with different search methods, gradient deltas, convergence criteria, and normaliza-
tion were tested. The ADS work was stopped when no gain even as small as 10E-06 could be
made. It can be seen that some ADS runs did much better than the expert system in this
case. The performance of ADS was found to be highly dependent on the choice of ADS pa-
rameters, whereas an expert system always produces “good” results without tuning. Full in-
terdigitation of all three search methods outperforms each of the three search methods by an
efficiency gain of as much as 1%, a very significant number for turbine efficiency. The final
turbine was an unconventional design with some of the parameter distributions opposite to
what was done traditionally. Analysis of the optimization history shows that although the use
of the genetic algorithm resulted in only a small gain in efficiency, it does appear to have
pushed the optimization process away from being trapped in constraint boundaries so that
the local hill climbing process could continue. Note that without the genetic algorithm the
partial interdigitation of expert system and ADS produced a lower-performance (0.5% less
than that of full interdigitation) but conventional turbine.

Molecular Electronic Structure Design

This design task was to locate the lowest energy state of a molecular electronic structure.
The design has less than a dozen variable parameters. The analysis code is relatively slow
and has to be executed on a remote mini-supercomputer.

It took one man-week of effort to solve a simplified case by hand iteration. It took haif a
day to couple the analysis code to Engineous, and one day to produce a similar solution. En-

12



% Efficiency gains

3

manual design  expert system num. opt. partial interdig. full interdig.

Optimization techniques

Figure 2:  Efficiency gains vs. iteration for various search methods:
expert system, numerical optimization (the heavily shaded region
representing range of performance depends on ADS parameter
settings), partial interdigitation (i.e., expert system and ADS),
and full interdigitation (i.e., expert system, ADS, and genetic
algorithm)

gineous has since been applied to a more complex case for this design task that couid not
have been solved by hand.

Cooling Fan Design

This is a very simple design task for Engineous, with only 44 parameters, 18 of which are
input. The significance of this application is that the same problem has been solved with a
pure OPSS rule-based system, EXFAN [Tong, 1986]. The development of EXFAN from
scratch took approximately 2 man-months. Reimplementing the same fan design with En-
gineous took half a day.

The design task is to determine the geometry, rotational speed, and air flow characteris-
tics of a simple cooling fan. The objective is to minimize power consumption while maintain-
ing a certain airflow. The quasi-3D fan analysis code uses 2D airfoil experimental data and
requires aerodynamic knowledge to interpret the results. Ensuring a valid solution is the key
issue.

The designs generated by Engineous are slightly better than those developed by design
experts. The turnaround time is less than 10 minutes for Engineous and half a day for the
human expert.
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DC Motor Design

The design task is to determine a complete specification for an industrial large DC mo-
tor. This task has 180 parameters, over 70 of which are input. The first step is to identify the
best configuration from a few hundred existing designs or generate a customized design if
needed.

This is considered a simple problem for Engineous, which it took a few man-days to im-
plement. The turnaround time of Engineous for this application is a few hours compared to a
few man-weeks by the design expert.

Power Supply Design

Engineous has been coupled to HSPICE for testing its applicability to power supply de-
sign. A simple forward converter with a target voltage of 75 volts was de<cigned both by a de-
sign expert and by Engineous. Engineous completed the design in 10 hours and obtained a
75.08 voits design; the design expert took approximately 3 weeks to obtain a 71.7 volts de-
sign. It took just a day to couple Engineous to this test problem.

Nuclear Fuel Lattice Design

The core of a nuclear reactor consists of a large number (hundreds) of fuel bundles.
Each bundle may contain a square matrix of 50 to 75 fuel rods with different material com-
positions. Even though the current choice of rods is limited to a few dozen, the solution
space is of the order of 10! to 10'%. This is a demanding application because of the tight
constraint of average uranium enrichment range over the bundle.

A simplified test problem was formulated to test the applicability of Engineous to this
domain. This test problem is formulated as a uranium shuffling problem and numerical op-
timization was not applicable. The use of human design rules enabled Engineous to meet
constraints in a few runs compared to a few hundred using a genetic algorithm. However,
the genetic algorithm obtained significant improvement over the expert system in optimiza-
tion. The resulting system obtains a preliminary fuel bundle design with a more optimized
single design objective in a few days of elapsed computer time compared to approximately
one week of manual effort for the same task.

Concurrent Aerodynamic and Mechanical Detailed Design of 3D
Turbine Blades

This application is being used to guide the current development of Engineous. It illus-
trates the type of complex multidisciplinary design tasks Engineous was developed to solve.
The process calls for completing a preliminary design of an aircraft engine turbine, then ob-
taining a complete detailed geometry of all the turbine blade rows that meets the aerody-
namic requirement of the turbine as well as mechanical vibration and static stress
constraints. This application involves approximately three dozen CAE codes, where some of
the three-dimensional CAE codes, such as ANSYS and CAFD, are so complex that they
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may require a few man-weeks for a designer to analyze just one design scenario. A typical
design cycle time, depending on the number of stages and complexity, is 12 to 24 man-
months. Preliminary results show that a large part of this design task can be reduced to a few
man weeks using Engineous. The CAE code flowchart is shown in Figure 3.
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Figure 3: Turbine blade preliminary and detailed design with
concurrent aerodynamic and mechanical analyses

Related Work

A number of other software systems employ some of the concepts described in this pa-
per. For example, Kroo and Takai's PASS system [1988] provides an environment for aero-
dynamic design and trade-off studies with a limited choice of optimization techniques. This
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system is specifically built for one domain, and analyses are performed by subroutines hard-
wired to the environment. Bouchard, Kidwell, and Rogan’s Engineer’s Associate [1988] pro-
vides a generic framework to work with systems that can be represented by equations.
Trade-off studies and a few generic optimizers are also provided. Both systems were devel-
oped for aerospace applications. The major difference between these systems and En-
gineous is that Engineous operates on an analysis code level rather than equation or
subroutine levels. The need to drive various analysis codes without modification and the
very large CPU requirement have added complexity to the Engineous environment. Also,
because the application domain is more diverse, Engineous must provide much more opti-
mization capability.

Conclusion

The current version of Engineous has demonstrated the profound impact such a system
can have on productivity and performance. The interdigitation of numerical and symbolic
techniques allows Engineous to solve a wide range of problems, from well-understood tasks
where there is ample knowledge to new design problems; from smooth to rough objective
functions; from aiming for conservative design to exploring new concepts; and from prob-
lems with real parameters only to complex problems with a mixture of real, integer, and
symbolic parameters.

With the rapid increase of computational power and the advance of numerical simulation
! methods, the number and complexity of engineering products that can be analyzed accurate-
ly will be increased rapidly and analysis turnaround time reduced substantially. The need for
human intervention in computation-based designs is currently a productivity bottleneck,
preventing many powerful numerical simulation modules from being used to their full po-
tential. Application of a system like Engineous can not only make the design process more
productive but also, by relieving designers of the need to carry out tedious, iterative proce-
dures, make it more fun.
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Extended Abstract

Personal computers and personal workstations have become the normal way scientists and engineers do computing.
However, not all computations can be done on the local machine. Programs that are too large, programs that
depend on unique software or hardware resources, programs that are proprietary, programs that are shared subject to
licencing restrictions on usage, datasets that are too large, and datasets that exist in unique locations are all reasons
for having to run a program on a remote computer. The local computer still is used, but it is used only 10 provide
access 1o the remote computer through a network or across communication lines.

At issue is what “provide access™ means. At one time, it meant that the local personal computer or personal
workstation emulated a character mode terminai such as a VT100 or a graphics terminal such as a Tektronix 4010.
The modern version of this is the X terminal, which provides locally a multi-window environment that the remote
program (usually running on a mainframe, but sometimes on another personal computer or workstation) can control.
In such a terminal paradigm, the terminal “logs onto” a remote host computer, and the preparation of the run of
the program, the interaction with the running program, and the analysis of the program results are all done on the
remote host computer, using the host’s computational resources. The remote program controls what is displayed
locally and how local input is accepted, that is, the user interface is determined by the remote program not the local
environment on the workstation. The remote program builds this interface out of local input/output services that are
available independent of which remote program is used, and the communications protocol is a standard that is used
by all applications that use the remote computer.

The symbiotic computation paradigm is quite different. In it, the computation is partitioned between a program
running on the local computer and a program running on the remote computer. The user interface is completely
determined by the program on the local computer, and the protocol for communications between the local and
remote computers is specific to that application. In particular, what the user at the keyboard types is not necessarily
what is sent 1o the remote program, and what the remote program sends is not necessarily what the user sees on the
screen. Commercial terminal emulators on personal computers almost all provide some form of scripting language
for communication control, which is the simplest instance of symbiotic computation. Symbiotic computation has
developed largely for two reasons: first, because with almost unbounded processing capability now available at both
the local and remote computers network bandwidth can be minimized using the symbiotic approach, but second,
and more importanty, because the binding times of the two programs can be different the user can customize the
user interface to his own needs, even when the remote program is not under his control (i.c. there is no need for
every user of the remote program 10 see the same interface). The trend in the data processing world to client/server
systems provide other examples of symbiotic computing.

This paper explores how such a symbiotic computation paradigm can be used, what functionality it must provide, and
what programming problems arise in trying to make the local and remote programs collaborate effectively. To look
at how symbiotic computation can be used, we need to keep in mind the objectives of why it is used. Historically,
the most important has been to hide unnecessary complexity and inflexibility imposed by the remote program, by
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the need to deal with several remote programs either sequentially or concurrently, and even by the need to deal
with several remote systems. The second most important objective has been data compression to facilitate remote
access over limited bandwidth lines. Display of computed data in ways intuitive and insightful to a particular user
on a particular run has also been imporiant. The theme appears both for input and output that the user has more
than one focus of concern and that these are largely unrelated, so that multiple contexts and even multiple threads
of execution are required to overcome the unnecessary sequentiality imposed by glass teletype terminals. Multiple
windows are a key advance. Asynchronous, or at least out of expected sequence, actions such as probes initiated
by the user or exceptions reported by the remote program especially benefit from this treatment.

The data input required to specify the particular problem 10 be solved is a major task for many scientific and
engineering computations, and neither offline nor conventional online data entry is completely satisfactory. Symbiotic
computation can be used to address this in several ways. Providing interactive help to explain input requirements,
validating input data against constraints, allowing a spreadsheet-like ability to enter expressions rather than just
numeric values, making links 10 databases and o other programs, facilitating annotations of why some value was
used, and even encouraging non-keyboard options for data entry from menus or analog displays are all techniques
to reduce the probability of accidentally setting up and running the wrong problem. Logging the input actually used
is important for identifying the point in problem space to which the results correspond, but it can also be useful
if the course of execution tums oul to require unanticipated entry of further data, because this often necessitates
terininating the run and reinitiating it once the required data has been determined, and of course it is desirable not
to have to re-enter data once given.

For many scientific and engineering programs, the complete computed results are 100 massive o move 1o the local
computer, nevertheless, key monitoring data is commonly displayed on a terminal, and symbiotic computation
facilitates recording such data, doing analysis and presenting the data in various ways such as summaries, history,
replay, or visualization. Data such as this can also drive expert system suggestions for further analysis or other
problems to try.

The programming issues that arise in all this are partly how to make life easier both when programming the remote
computational program and when programming the local interface, as well as how 10 cope with the independent
evolution of these programs. The programming style to cope with asynchronous communication between the
programs is particularly significant. Object oriented technology, direct manipulation, and scripting play an important
part. Communications protocol should not be hidden, but should be part of the specification of the interface to
the remote com putau-n. In many cases this will mean that the remote computation must be structured as a server,
capable of respo- iy asynchronously to requests for input, output, and status information. The local computation
will also take on this same organization since it will have to respond 10 similar requests from both the remote
computation and the local user.
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Abstract

Mathematica is a general system for numerical, symbolic and graphical computation which can
be used both as an interactive calculation tool and as a programming language. Its capabilities
include arbitrary precision arithmetic, matrix manipulation symbolic algebra, integration,
differentiation, power series, two-dimensional plots, contour plots and shaded colour
three-dimensional pictures.

Through its integration of all the elements necessary for quantitative analysis, its wide
availability, portability, large user-base and consistent system design, Marhematica provides
the most complete problem solving environment presently available.

Mathematica runs on a wide range of machines including the Macintosh, PC, NeXT, Sun, Sony,
Dec, HP/Apollo, IBM, and Convex computers and Mathematica code on all these machines is
completely compatible. Of course, the smaller machines are limited in their capabilities by speed
and memory but the Mathematica system design permits computational scaling. Furthermore,
the separation of the front end and computational kernel allows small machines to interface to
powerful computational engines in a transparent fashion.

This paper provides a brief overview of the capabilities of Mathematica through a few diverse
examples ranging from solving the Kepler equation to visualizing random walks. A complete
description of Mathematica is found in [Wolfram 91].

Introduction

Mathematica has a large range of built-in functions necessary for high-level problem solving
including arbitrary precision arithmetic, e.g.,

85!
28171041143805502769494794422606115948005663433057420640510191275256\
0026159795933451040286452340924018275123200000000000000000000
special functions in the complex plane, e.g.,
N(BesselJ(l, 3 + 2 I), 50]
0.7801488485792537845179859316702371120659926620017 -

1.2609820602388484315992864301761607095709315523677 1
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a complete symbolic language including differentiation and integration, e.g.,
Integrate[ExpIntegralRi(-a x] Sin[b x), {x,0,Infinity}]

2 2
a (2 Log{a}] - Log{fa + b ])

2 b Abs(a]
trigonometric identities, e.g.,

Factor[3 Cos[x]/128 - Cos[3x]/64 - Cos[5x]/64 + Cos[7x])/256 +
Cos[9x] /256, Trig -> True)

S 4
Cos[x] Sin(x])

and visualization, e.g.,
Plot [BesselJ[0,x) BesselJ[l,x], (x,0,10}]:

0.3

0.2

2 \/[\v/a\\.zo

In the following sections, examples from a range of areas are considered that attempt to give a
feeling for the application and overall capabilities of Mathematica.

Kepler Equation

The Kepler equation arises in celestial mechanics. The equation s = u + e Sin{s) where E is
a function of both u and e, with e regarded as a small quantity, is easily solved using power
series. Note that the Marhematica syntax naturally lends itself to the solution of this problem.

Series Solution

Introducing the quantity a{k) = e Sin{u + a[k-1]] + O[e]~(k+1) then, in the limitx ->
Infinity,a = @ 8inf{u + a). Hences = u + aasthena + u = u + @ Sin{u + a) and
finally s = u + @ 8in[s].

Defining the initial condition,
af[0] :=0
and the iteration,
a[k_) := afk) = @ 8in[u + a[k-1]) + O[e]*(k+1)
where dynamic programming is used to store all the intermediate computations, we obtain, e.g.,
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a[3]

3
2 2 Sin{u] 3 4
Sin{u] e + Cos[u) Sin[u)] e + (Cos(u] Sin(u] = ——) e + Ole]
2

To simplify the expressions we require a Fourier-type expansion:
expand[exp_ ] := Expand[Normal[exp], Trig->True]
Here is the sixth term in the expansion:
a[6] // expand

3 S 2 4
e Sin{u] e Sin{u) e Sin[2 u) e Sin(2 u]
e Sinfu] - + + - +
8 192 2 6

6 3 S 4
e Sin{2 u) 3 e 8in[3 u} 27 e S8in[3 u) e Sin{4 u)
+ - + -
48 8 128 3

6 5 6
4 e 8Sin[4 u] 125 e Sin{5 ul] 27 e Sin[6 u)
+ +
15 384 80

It is straightforward to collect together all the terms in Sin{n u]:
Collect (8, Table[Sin[n u], (n,1,6}]}

3 5 2 4 6
e e e e e
(e = — + —) Sin[u) + (— = — + ~—) Sin(2 u] +
8 192 2 6 48

' 3 S 4 6
3 e 27 e e 4 e

) Sin[3 u] + (— -

8 128 3 15

(

) Sin[4 u)] +

5 6
125 e Sin(5 u] 27 e Sin[6 u)

384 80

Formal Solution

The standard formal solution involving Bessel functions is easily verified up to any desired order,
eg.,

s = u + 2 Sum{Besselt({n, n e] Sin[n ul/n, {(n,1,4}] + Ole)*4 // 8implity
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2 3
Sin[2 ul] e (-Sin[u)} + 3 Sin{3 u)) e 4
u + Sinfu] e + + + Ofe]
2 8

which is to be compared tou + e Sin[s):

u + e Sin(s] // Simplify

2 3
Sin(2 u) e (-Sinfu] + 3 Sin([3 u)) e
u + Sinfu] e + + +
2 8

-8in(2 u] Sin{4 u} 4 S
( + ) e + Ole]
6 3

It is important to note that not only are the numerical properties of the whole range of the special
functions of mathematical physics built-in but that Mathematica can also compute other
properties such as series expansions and differential recurrence relations, e.g.,

D({BesselJ[n, x), x)

BesselJ[-1 + n, x)] - BesselJ[l + n, x)

2

Random Waliks

The concept of the random walk is fundamental to statistical physics. One interesting
application of random walks is to the Black-Scholes model used in stock trading.

The following examples illustrate random walks in one, two and three dimensions. List
operations and plotting routines can be combined to yield concise programs for generating
random walks. The Mathematica language is both high-level and natural and the extension to
higher dimensions follows straightforwardly.

Cumulative sums can be computed using the roldrist command, e.g.,

roldList (Plus, 0, (a,b,c,d,e}}

{0, a, a+b, a+b+c,a+b+c+d a+b+c+d+ e}

One-Dimensional Random Walk

Starting at the origin (0), 200 random real numbers in the range {-1, 1} are selected and
cumulatively summed:

YoldList [Plus, 0, Table{Random[Real, {-1, 1}], (100}]1];
The (suppressed) plot of the distance from the origin as the number of steps increase is given by
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oned = ListPlot([%, PlotJoined -> True]:

2-//\\

20 20 60 80 100

U
[\

-10}

Two-Dimensional Random Walk
The extension to the two-dimensional case is straightforward:
FoldList [Plus, {0, 0}, Table[Random[Real, {-1, 1}1, {100}, {2}1]:
Here the graphical output is suppressed:
twod = ListPlot[%, PlotJoined -> True, AspectRatio -> 1,
DisplayFunction -> Identity]:
Three-Dimensional Random Walk
Finally in three dimensions:
FoldList ([Plus, {0, 0, 0}, Table[Random[Real, {-1, 1}], {100}, {3}]]):
threed = Show[Graphics3D[Line([%]], Axes -> True, DisplayFunction -> Identity]:
and now we show an array of the two- and three-dimensional graphics:

Show[GraphicsArray[{twod, threed}], DisplayFunction -> §$DisplayFunction];
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Polynomials and Matrices

In this section, two methods for producing random polynomials show dramatically varying
behaviour. Mathematica's graphics are used to enhance intuition and understanding.

Random Polynomials
) Consider the following definition of a polynomial with uniformly distributed random coefficients:
‘ RandomPolynomial[n_, x ] := Table{x*i, {i,0,n}].Table[Random{], {n+l}]
eg.,
RandomPolynomial[3, x]

2 3
0.167616 + 0.205668 x + 0.400681 x + 0.610133 x

The roots of a random polynomial of, e.g., size 50 are given by
roots = x /. NSolve[RandomPolynomial[50, x] == 0, x];

and the real and imaginary components can be projected out using
argand = {(Re[#], Im[#]1}& /@ roots;

which permits visualization:

ListPlot (argand, PlotStyle -> PointSize[0.03], AspectRatio -> 1);

° .olk ° o
®e °
o ° i
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® 0.5 Y
. .
° ®
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°
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°
. ° -0.5 ..0
: @ L ®
| °® ®
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It is apparent that the eigenvalues lie approximately on the unit circle in the complex plane.

Random Matrices

Consider the following definition of square matrix with random real entries uniformly distributed
between 0 and 1:

random([n_] := Table(Random(), (a}, (n}]
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For a 100 x 100 matrix,
matrix = random[100):
its eigenvalues,
evalues = Eigenvalues [matrix];
can be visualized using
argand = {Re[#], Im[#]}& /@ evalues;

ListPlot [(argand, PlotStyle -> PointSize[0.03]];

We see that the large majority of the eigenvalues fit inside a circle centred on the origin.
However, setting PlotRange -> All reveals that one of the eigenvalues is at the value of
approximately n/2 where n is the size of the matrix:

ListPlot [argand, PlotStyle -> PointSize([0.0l1], PlotRange ~> All};

This example shows that Mathematica handles random numbers, matrices and complex
numbers in a unified fashion and this makes it a good investigative tool aiding our physical and
mathematical intuition. Note that the probability that two very large integer matrices have
relatively prime determinants has recently been computed using Mathematica [Vardi 91} and
the result is, like the situation in the above example, quite different to the probability that two
large integers are relatively prime.
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Electric Circuit

Since Mathematica has the capability to solve systems of numesical Gifferential equations, many
physical problems can be examined. For example, consider a pair of noa-linear differential
equations describing an electric circuit [Crandall 91, Levy 91],

equationl = v[t] == xr i[t] + k i[t]*D + 1 i'[t]:
and
equation2 = v'[t] = -i[tl]l/c;

Supplying the circuit parameters; ¢ (capacitance) , r (resistance), 1 (inductance), and the model
parameters k and b,

parameters = {c->20 10%-6, r -> 2, 1 -> 10%-4, k -> 70, b -> 0.38});
to the equations,
equations = {equationl, equation2} /. parameters

0.38 irlt]
{v[t] == 70 i[t] + 2 if[t]) +

, v'[t] == -50000 i[t]}
10000

specifying the initial conditions,

initial = {v[0] == 5000, i[0] == 0};
it is straightforward to obtain the solution for the first 170 ps,

solution = NDSolve[Join[equations, initial), {v[t]), i[t]}, {(t,0,0.00017}];
Here is a plot of the voltage and current as a function of time:

plot = Plot[Evaluate[{v[t], i[t])} /. solution], {t,0,0.00017}];

5000

4000}

3000t

2000

v

1000

2

0.0000250.000050,000075 0.0001 0.0001250.000

It is apparent that the modeling of quite complicated physical systems is quite straightforward
since the numerical and graphical packages are built in.
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Recurrence Relations
Suppose that one has a recurrence relation, e.g.,

n pin] == (n-1) p[n-1] + pn-2]

n pln] == p[-2 + n] + (-1 + n) p[-1 + n]
with the boundary conditions

pl0]l = 1; p[1] = O;

The general solution to a very large class of recurrence equations is possible using the RSolve
package, implemented in the Mathematica programming language [Maeder 91], and loaded
using the command

<<DiscreteMath'RSolve’
Entering the recurrence and the boundary conditions, one obtains the generating function:

gf = GeneratingFunction[{ (n+2) pin+2] - (n+l) pn+l] - p(n] = 0,
pl[0] == 1, p[1l] == 0}, p[n], n, x)

1
{{—————1}1}
z
E (-1 + z)

The series expansion about 2 = 0 of this expression is

gt + 0[z]*7
2 3 4 ) 6
z z 3 2z 11 z 53 z 7
({1 + — + — + + + + 0[z] }}
2 3 8 30 144

A much more difficult question is the general term of this expansion. This is found using the
SeriesTerm operator:

gt = SeriesTem{gf, (z,0,n}]

K{1]
(-1) If{n - K{1] >= 0, 1, 0]
{{ 1]
K[1}!

where K[1] denotes the (first) summation index. Rewriting the summand as
summand(n_, k_] = (& /. K[1] -> k);

permits the evaluation of a particular term using
tem(n_) := Sum[summand([n, k], {(k,0,n}]

For example,
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Problem Solving Using Mathematica

term[S5]

11
{{—11}
30
which agrees with the series expansion and the recurrence relation. Quite a broad class of
recurrence equations can be solved using RSolve.

Conclusion

The integration of numerical, symbolic and graphical capabilities with a consistent syntax and
natural programming language assists the modelling of physical problems. Although
Mathematica is an interpreted language, which implies that it will be slower than a compiled
language, it has several advantages: It is an easy language to learn because it is "natural” due
to its high-level functionality; Numerical functions in Mathematica now "compile” (function
compilation) and so the speed penalty is reduced; It is powerful because of its extensiblility and
is an ideal platform for prototyping ideas — often a detailed analysis of a problem will indicate a
better method of solution and this can immediately be implemented in Mathematica through its
high-level programming language.

Through the use of symbolic manipulation, arbitrary precision arithmetic and graphics, the effects
of computational errors and uncertainties in data can easily be ascertained. The language is
application-oriented as it includes such a variety of control structures, functions and operations
that many problems can be coded essentially "as is”". The use of pattern-matching, coupled with
rule based capabilities, provides a very powerful and easy to use programming environment.
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Accuracy Control and Estimation, Self-Validating Systems and
Software Environments for Scientific computation
S. M. Rump, Hamburg

Traditional numerical algorithms do, in general, produce very good
approximations to the true solution of the posed problem. There are very efficient
techniques for backward error analysis and also the methods of traditional
numerical analysis for forward error analysis are on a very high level (condition
estimators etc.).

The methods for estimating the true error of the computed solution (w.r.t. the true
solution of the given problem) are, in general, estimators. They proved to be stable,
pitfalls are rare. If it would be possible, however, to construct algorithms being
comparable in speed with traditional numerical algorithms and giving validated
bounds for the true solution of the given problem, this would be interesting, at least
for critical problems.

Before we say that such algorithms exist for a number of standard numerical
problems we must say some words on the "solution of a given problem". The point
is that in the computer we frequently do not have the original, practical problem we
want to solve but first a discretisation of it and second a rounded version of it
(omitting tolerances inherent to the data of the problem). For example Bellman
[Bel75] writes "Considering the many assumptions that go into the construction of
mathematical models, the many uncertainties that are always present, we must
view with some suspicion at any particular prediction. One way to contain
confidence is to test the consequences of various changes in the basic parameters.”
Hence a "validated solution" must not only comprise of guaranteed error bounds
for the solution of the particular problem stored in memory but also of (validated)
information on the sensitivity of this solution w.r.t. perturbations in the input data.

Usually such a sensitivity analysis yields bounds for the amplification factors
depicting the dependency of a particular component of the solution on variations of
a particular input parameter. This bears e.g. the advantage that system zeros
remain unchanged (see also [ArDeDu89)). It may happen, however, that
discontinuous changes of the solution occur like in LP-problems in the basisinstable
case. In this case the output comprises of a list of solutions being optimal with
respect to some specific problem with the input tolerances (see [Ja85], [JaRu90)).

It is obvious that the computation of validated bounds requires a precisely defined
computed arithmetic, preferably with smallest errors possible for the individual
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operations. A major step towards this goal is Kulisch’s definition of the computer
arithmetic and the IEEE 754 binary floating-point standard, the latter nowadays
being implemented in many computers [IEEE86]. The standard also comprises of
directed rounding modes. It suffices to produce validated answers; better and
sharper results are obtained, however, using the arithmetic proposed by Kulisch
[Ku76,81].

Algorithms for computing validated bounds with the described properties
including a complete sensitivity information have been developed for a number of
standard numerical problems such as general linear systems, eigenproblems,
polynomial zeros, linear programming problems including the basisinstable case,
general systems of nonlinear systems and others [Ru80,83,90], [ACRS6], [Ar86).

Especially the automatical and validated sensitivity analysis offers great advantages
to the user. The sensitivity allows to check the problem rather than the solution and
a backward engineering: What accuracy is necessary for the data to meet specified
tolerances in the components of the solution?

A (very) extreme example is the following system of linear equations:
-367296-t - 43199-u + 519436-v- 954302w =1
259718t - 477151.u- 367295-v-1043199-w =1
886731t + 88897-u - 1254026-v - 1132096-w = 1
627013t + 566048-u - 886732-v + 911103-w = 0.

The correct solution is
t =8.86731088897 - 1017
u = 8.86731088897 - 1011
v =6.27013566048 - 1017
w = 6.27013566048 - 1011

However, a relative perturbation of any matrix component by 10-34 alters the first
figure of the solution. The sensitivity of the linear system is 1034.

We will especially present some new ideas for a fast linear system solver producing
validated bounds. This is in fact a hybrid algorithm. The fastest version needs only
n3/3 floating-point operations plus 0(n2) interval operations. It is therefore as fast
as traditional Gaussian elimination and works for moderate condition numbers. If
the algorithm fails it gives an internal error message and switches automatically to
the next algorithm in the series requiring additional n3/6 floating-point operations.
It never happens under no circumstances that a false answer is produced. The
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failing of any of our algorithms with result verification is monitored by an
appropriate error message saying that the precision in use is not sufficient for the
method to solve the problem.

The hybrid algorithm for linear systems comprises of 5 steps each requiring n3/3,
n3/2,2n3/3, n3 and 2n3 floating-point operations in total, resp. plus 0(n2) interval
operations where the additional effort going from one stage to the next is exactly the
difference of the given two numbers. In others words each algorithm can fully
make use of what has been achieved by its predecessor.

Furthermore algorithms will be presented for solving large band and sparse linear
systems with symmetric positive definite and with M-matrix. The presented
algorithms require as many floating-point operations as a traditional LU-
decomposition in the nonsymmetric or an LDLT- or Cholesly-decomposition in the
symmetric case plus some 2n2 interval operations.

In order to achieve validated results on a computer an adequate programming
language is necessary as well.

Interesting enough a well-spread programming like Pascal requires few additional
concepts to gain significantly for numerical and validated programming. Moreover,
from a compiler point of view those concepts are not difficult to implement.

The concept of units, not included in Standard Pascal, is already part of many
modern implementations. Name overloading which means that two functions
and/or procedures may have the same name if they differ in number and/or type
of arguments, is extremely useful and fairly simple to realize. The general result
type is slightly more difficult to realize but gains a lot combined with an operator
concept, the latter being simple to realize. The next extension necessary for
numerical computations but a little bit more difficult to implement are dynamic
arrays.

Those extensions have been implemented in the language TPX - Turbo Pascal
eXtended [Hu91}, a superset of Turbo Pascal which is transformed into Turbo
Pascal by a precompiler. The latter has been written using the compiler generating
tools Rex and Lalr [Gro87, Vie89). The precompiler turns out to be very fast. It
comprises of libraries for vectors and matrices over real and complex numbers as
well as intervals over those, a long real and interval arithmetic and much more.
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A user friendly software environment for scientific computation should avoid as
much redundant information in a program as possible. Traditional programming
requires type declarations etc. in order to produce fast code. For production code
this is worth striving for. For development or research of algorithms it hinders.
Therefore we are aiming on a software environment accepting the mathematical
notation where possible without overhead.

There are systems like Matlab going far in this direction for matrix computations.
However, they are fairly inflexible. From a mathematical point of view it should be
possible to define matrices over some basetype together with the usual operations.
The basetype, however, could be the set of real numbers als well as complex
intervals or matrices again (for block matrices). Moreover, special structures like
sparsity or symmetry should be possible together with efficient implementations.

This is possible, up to a certain point, using object oriented programming languages
like C++. If the same is done with more comfort to the user by an interpreting
system this has usually to be paid by a fairly poor performance. Methods will be
presented to overcome this difficulty. It will be incorporated in the system
ABACUS, a prototype of which we hope to be able to demonstrate.
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Abstract

In the kernel of a black-box PDE solver, like FIDISOL, there is an iterative linear solver, like LINSOL,
that must be robust and efficient. Up to now no single method has the desired properties. We use as a
compromise a polyalgorithm that is composed from several CG-type methods, switching from one method
to the other, if necessary. The corresponding strategy and investigations to improve the propertics are
discussed. Briefly we report about similar investigations for the general symmetric eigenvalue problem.

1. Introduction

With the advent of ever larger supercomputers and the progress in algorithm and software development,
there is an increasing demand for "black-box” type solvers for PDEs (partial differential equations). For
structural analysis there are many FEM (finite clement method) program packages that solve a distinct
variational equation with great flexibility of the geometric conditions. Here the operator and the solution
method are fixed, and thus the resuiting sparse lincar system that must be solved in the kernel of the solution
algorithm has usually well-known properties.

The situation is quite different for more general black-box solvers. In the FIDISOL program package, that
has been developed in our research group, see section 17 in [1], for elliptic PDEs a differential operator of
the type

PusP(x,y, 24 u,u,u, U, u,u,) =0 1y

can be used, where u and P bave m components for a system of m PDEs, and P is an arbitrary nonlinear
function of its arguments. A similar operator Gu = 0 for the BCs (boundary conditions) on a rectangular
domain is admitted. For the solution a variable order/variable step size FDM (finite difference method) is
used. The consistency orders in the space directions can be prescribed by the user or can be selfadapted by
the solution procedure to meet a given relative tolerance of the error. Thus neither the properties of the
PDE and BC operators nor the form of the difference star are known to the designer of the program
package. As a consequence the properties of the resulting linear system for the computation of the Newton-
correction or of the error estimate are not known and may cover an extremely wide range. The solution of
linear systems under those extreme conditons is the main subject of this paper.

For the solution of the extremely large and sparse linear systems (above all if they result from the
discretization of 3-D problems) only iterative methods can be used. Usually the problem size is limited by
the size of the matrix of the linear system, thus this matrix will use the whole available storage. For such
types of problems the fill-in of direct methods would lead to prohibitive storage and computation
requirements. The most efficient method for the iterative solution of certain types of linear systems are MG
(multigrid) methods {2]. But MG is a whole family of methods that must be tuned individually for each
problem to obtain the high efficiency. Thus MG is highly efficient, but not robust enough to be used as a
type of black-box linear solver for the wide range of problems that result from a PDE solver like FIDISOL.
Therefore we decided to use CG (conjugate gradient) type methods. But also CG is a whole family of
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methods with different properties. When we investigated these methods we recognized that methods that are
highly efficient in one case failed completely in the other case. These investigations then finally led us to the
polyalgorithm that is discussed below.

50x50x50 grid, 6POE's. orders L wo | 13-point
slor
l
!
o
N N
: zeros  end blocks Neumann 8C.
: have 11
: s {insteac of 6 )
L1 = diagonals
* 4 . [ I )
zeros ™ I 5 reguiar 3 odditiono.
dicgonals

Same at opposite boundary

Fig. 1.1 Structure of the block diagonals for a system of 6 PDEs.

Before we discuss CG type methods we want to discuss how to store cfficiently such large and sparse
matrices that result from (high order) FDMs. This question is closely related to the key operation of all CG
methods, namely the MVM (matrix-vector multiplication). Depending on the mcthod, for each iteration step
one MVM with the matrix A or also an additional MVM with the transpose AT must be executed. In Fig.
1.1 the structure of the matrix for a 3-D system of m = 6 PDEs is depicted for consistency order 4 in each
space direction. There result 13 "regular” block diagonals, but close to the wall and for Neumann BCs at the
wall one-sided difference formulas with one additional point (to maintain the order) must be used, creating
block-diagonals with only a few nonzero clements near border variables. After many discussions and
investigations we decided to store such types of matrices by diagonals (“"true” diagonals, not block-diagonals).
But storing of true diagonals introduces a storage overhead for the storing of the zeros, see Fig. 1.1. The
alternative is packed storing with 64 bits for the matrix elements and 32 bits for the indices in the diagonal.
A storage-optimal decision for this situation is to store diagonals with more than 2/3 zeros as full diagonals
(with zeros) and the other diagonals as packed diagonals.
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Fig. 1.2 Ilustration of the MVM for a 9 x 9 matrix with 6 diagonals.

The MVM can be formulated easily by diagonals, see the illustration in Fig. 1.2. The diagonals of the
matrix A are arranged for the multiplication with the elements of r and the dashed lines indicate the addition
of the products to the result vector d = Ar. Note the different rules for upper and lower diagonals. For the
multiplication ¢ = ATt the matrix A must not be transposed, but only the rules for upper and lower
diagonals must be inverted. The tuning of this MVM for register vector computers is reported in (3].
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2. Generalized CG methods

The iterative solution of extremely large and sparse linear systems is perhaps the most pressing problem
in scientific computing today, several recent conferences were dedicated to this subject {4 -7]. As mentioned
above we decided to use generalized CG methods for non-symmetric linear systems.

The linear system of n equations with non-singular n x n matrix A’ that we want to solve is

Ax =D 1)
Iterative solution means iterative reduction of the residual. If in (2.1) one equation is multiplied by 10° this
does not change the solution, but changes completely the itcration process because now the residual of this
equation gets the 10%-fold weight and the iteration process will try to fulfil above all this equation. Therefore
an appropriate normalization is absolutely necessary for CG-type methods. With A’ = (a’; ) and the diagonal
matrix D = (d;) we normalize (2.1)

DAx=Db ~Ax=b 22)
with

d; = (/X1 )sign ;. (23)
" This means normalization to absolute row-sum equal to one and positive main diagonal and could be
denoted as a simple preconditioning of (2.1) from the left.

Thus the normalized linear system with general (non-symmetric) matrix A to be solved and its residual
1y for an iterate x, are

Ax=Db, r, = Ax -b. (249)

Experience tells us that the residual r; oscillates heavily for generalized CG methods. Therefore we use a
smoothing algorithm and compute parallel a to the iterated sequences ry, x, smoothed sequences rp; ;.
Xmink a5 a weighted combination of the new iterated values and preceding smoothed values:

Tmin, k+1 = 3Tmink + (l'ak)r k+1b (2 5)

Xmink+1 = &Xmink * (1-8)%c 41

The coefficient a, is determined from rzmin'k +1 = min, see [1], p. 261. There is no feedback of the smoothed
sequences to the iterated sequences except at eventual restart points when we restart from the smoothed
sequences. In the following we present the basic three methods of our ployalgorithm.

A quite simple access to generalized CG methods is the following. We define a pseudo-residual 1, , ; (that
is proportional to the true residual, see [1], p. 413) by

rk+1 = Adk + ul*rk + az'krk_l + ..+ ap’krk_]”l, (2.6)

i.e. as a combination of Ad,, where d, is a search direction, and p preceding (true) residuals. With

Id
T 'f;kol' fk-llzau 2.7

isl

follows

xk’l = fk(dk + al’kxk + Cz'kxk_l + ..+ ap’kx.k_p+l). (2.8)

The coefficients a;, are determined from
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Tx-tat
From this set of formulas we get the PRES20 method by selecting d, = r, and p = 5, this corresponds

to a truncated ORTHORES method, sce [8], p. 346. This method would not work in most applications. What
makes this a useful method is a restart after 20 iterations from the smoothed sequence. This method is called
PRES20. The value of p = 5 and the restart index 20 have been optimized by "numerical engineering” [9].
We start with x; = 0 or some guess X, Tg = A - b, and (also after each restart) with p = 1, 2, 3, 4, 5. For
"sufficient” diagonal dominance PRES20 is the fastest method. PRES20 needs one MVM per iteration step.
For the search direction d, = AT, n, we gct the ATPRES method. This can be considered as a
preconditioning of PRES from the left by AT. Then the “iteration matrix* is AAT. From inherent
orthogonahlxcs follows a;, = 0 for i » 2, the method is an exact method that would termmate after n
iterations in the absence of roundmg errors. The multlphcatlon AAT . is cxecuted asy, = AT 0.7, = Ay,
which is much more economic than a direct calculation via a matrix AAT. Thus we need two MVMs per
iteration step. ATPRES turns out to be a rather slowly convergent but at the same time very robust method.
The biconjugate gradient method BICO can be obtained from the following approach for the pseudo-
residuals rp,; and r |, = Ay, - b (see [1], p. 257):

Ty = ATy + @F, +BJyy + Y4 Ty *+osy
(2.10)
T = ATF + aJ + Bl * Yez *-- -

The coefficients a,, B, are obtained from T k+ 1o T'k+1 = extremum. From inherent orthogonalities follows
¥x = . = 0. With r, = q,r, and the recursion q;,; = a;q, + B,q,_, follows the relation

Tt = Oy + 285 + By %) 14, - 2.1

The auxiliary variable y, is of no interest and does not appear in the algorithm. The algorithm can be
reformulated in true residuals and auxiliary vectors {10]:

- . . T,
Te =Te *8AD, iy =T +a3A°D,,

Piy = Toay * BPy s Doy = Tea BP: (.12)
T » T o
rr rOrQ

g, = - —2t b, = Jetlba

T o ’ & T »
(EVAYN rer;
Xpat = X * Q)P -

We start withrg = 1p’ = py = pg = AXg - b. The method is an "exact” one that terminates in the absence
of roundmg_errors after n iterations with the exact solution. We need two MVMs per iteration step, namely
Apyand A pk A breakdown is cured by a restart from the smoothed sequence if one of the denominators
of a; or b in (2.12) becomes (nearly) zero. BICO turns out to be a "medium" method just in between the
two other methods: it is more robust than PRES20 and faster than ATPRES where it still works.

A unified theory for generalized CG methods has been presented by Weiss [11, 12]. The main results of
this theory for the above discussed methods are: All generalized CG methods construct residuals that are
in the Krylov space spanned by the iteration matrix and the initial residual. As the iteration matrices and
strategies are quite different, also the convergence behavior is quite different.

For PRES20 we have the iteration matrix A and thus the convergence behavior depends on the eigenvalue
distribution of A. The method converges if the symmetric part of A is positive definite [11]. The method is
robust with respect to rounding errors because of the restarts.

BICO converges even if the symmetric part of A is not positive definite. As an "exact® method it is
sensitive to rounding errors. The convergence is dominated by the eigenvalues of A. It is important for BICO
to smooth the oscillating behavior of the original sequence (without feedback).
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ATPRES uscs the iteration matrix AAT and thus the convergence behavior is dominated by the
cigenvalues of this matrix. It has been shown in {11] that ATPRES minimizes the error in the Euclidean
norm.

3. The polyalgorithm

In the LINSOL part of FIDISOL the three above mentioned generalized CG methods and several other
iterative methods (see section 17 in [1]) have been included. For the solution of 2 PDE problem the user
of the FIDISOL black box can select himself the iterative solver that he thinks, eventually by experience from
preceding problems, to be the best method. But clearly it would be best that LINSOL selects itself the most
efficient iteration method. Thus we need an “intelligent” linear solver.

It is also clear that we may not try to compute the eigenvalue distribution or the condition number of the
iteration matrix A and then to decide which method is the best one, because the computation of these data
is more time-consuming than the solution of the linear system itself. The solution x of the linear system (2.4)
is a Newton correction for which no guess can be provided. The solution vector u of the PDE (1.1) enters
itself into the matrix A and thus A may change its properties completely during the different steps of the
Newton iteration process so that the decision for the type of linear solver must be made individually for each
Newton step. How can we select the optimal iteration method under these circumstances?

Our experience with the three generalized CG-type methods showed that PRES20 was best for strongly
elliptic problems, BICO was best for “medium"” elliptic problems and ATPRES finally converged slowly also
for weakly elliptic problems. So we composed from these three methods a polyalgorithm in the following way,
which is a typical "numerical engineering® decision that makes use of "experience”: The polyalgorithm starts
with PRES20 and controls every 20 iterations at the restart point if the Ly-norm of the residual of (24), i.c.
of the normalized equation Ax = b, has decreased by a factor of 0.5. If this is not the case, we switch to
BICO. Then we check after every 1000 iteration steps if the residual has 'decreased at least by a factor of
0.1 over the last 1000 iterations. If this does not hold we switch to the "emergency exit” ATPRES. The reason
why we check only after 1000 iterations is that BICO often converges in "steps” where it "falls down the cliff”
at a certain iteration stage after a seemingly inefficient period. This strategy means that even in a single
Newton step the iteration method of the linear solver may be changed.

In order to demonstrate how this polyalgorithm works we execute it for the solution of the following
system of three nonlinear PDEs:

Uy + Wy + u, + U+ Rluu + vuy + wy)-hy =0,

Ve * Vyy ¥ Vg + Y+ Ry, + W+ wy,) - by =0, (3.1)
W + Wy + Wy + W+ R(uw, + vy + ww,) - by = 0.

The h; are determined that the solution is
u = sina cosP cosy, v = cosa sinP cosy, w = cosa cosP siny (32)

with & = 2rx, 8 = 2xry, v = 2rz. We prescribe Dirichlet boundary conditons, i.e. u, v, w on the unit cube.
This example is a coarse model of the Navier-Stokes equations. The parameter R has the character of a
Reynolds number. For small R we have strong ellipticity, for large R we have a more hyperbolic character.
Thus we can change the type of problem by the value of R.

We generate A’ and b’ of (2.1) by FIDISOL for the consistency orders 4 in x, y, z-direction on a grid 40
x 40 x 40 ( n = 192 000). The initial values for v, v, w are mean values of interpolations between the
boundary values in x, y, z-direction. For these values the matrix A’of the first Newton step is used as test-
matrix. We force LINSOL to reduce the L,-norm of the relative residual Ir,1/lIrgl of the normalized
equations (2.4) to be reduced to 102, In Fig. 3.1 we depict the log of the relative residual as a function of
the MVMs. Note that PRES20 needs one MVM, but BICO and ATPRES need two MVMs per iteration
step. The MVM:s are a good measure for the computation. The parameter R is indicated as r on the top of
the figures. For R = 1 and R = 10 the polyalgorithm follows PRES20, for R = 100 the polyalgorithm is
between PRES20 and BICO, for R = 1000 the polyalgorithm follows BICO and for R = 10000 it follows
nearly ATPRES. Thus the polyalgorithm with the above mentioned strategy follows nearly the best method.
This is what we can call making “intelligent” software by numerical engineering.
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4. Preconditioning

If we look in Fig. 3.1 at the convergence behavior for R = 1000 or R = 10000 we see a slow or very slow
convergence. The dream of all users of CG methods is to have a preconditioning matrix that transforms the
linear system to such a one that CG converges fast. If we put in the approach (2.6) the unknown search
direction d; as

dk = Pkrk (4'1)
with a preconditioning matrix P, (this is preconditioning from the right, in contrast to multiplication of the
whole equation (2.1) by a preconditoning matrix form the left), we may ask: What is the optimal P, ? If P,
= A "l we have in (2.6)
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-] 5
-51 &
£ 3
E 3
2 -10 § -104
= [~
g 2
- -154 _ e -154
PRESZ0+FaLY
, =oa, -20
-200 300 600
MVM MVM

-5

-104

log residuum
tog residuum

«154

-20

MVM

j— PRES20
I -~ BICO
] ——— ATPRES

20 — cemceccacssntons POLY

MVM

Fig. 3.1 Reduction of the relative residual for different algorithms over the number of matrix-vector
multiplications (MVM).
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Ady = APr, = AAl =1 42)

Then by @), = - 1 and «;; = Ofor i » 1 we have r,; = 0, thus 1 ,; and X, ,; = x. Unfortunately this
perception is of no practical use because determining d, from Ad; = r, is the same problem like the solution
of (2.1) itself, and if we knew P, = A"l we needed not to solve (2.1).

Before we present two approaches to preconditioning, we want to discuss the meaning of preconditioning
from a heuristic point of view that may help us to understand precondtioning and thus to develop better
preconditioners. The iterative solution of linear systems means iterative reduction of the residuals of all n
equations. This reduction has two components: The reduction of the residual of each equation that couples
a certain number of unknowns and represents a "local" transfer of information, and the global residual
reduction that represents a “global” information transfer over gll unknowns. All iteration methods reduce
relatively fast the local residual to a certain level, but then the global residual reduction proceeds rather
slowly because now the information of all equations must be balanced and the global information must be
transferred via the local equations. Formally we would say that the condition number becomes larger if we
increase the size of a linear system of the same structure, e.g. we increase the number of grid points in a
FDM problem. Therefore the effect of a good precoaditioner is to transfer quickly global information
through the whole system. This is ultimately the reason for the high efficiency of MG. By the coarser grids
variables with larger "distance” are coupled directly. Unfortunately the method is not robust enough for a
black box solver like FIDISOL. Thus the design goal of a preconditioner must be to transfer global
information in a robust and efficient way into the iteration process.

But there is an additional problem if we want to use supercomputers; An efficient use is only possible with
optimal data structures that support the data flow through the pipelines. For this reason we decided to store
the extremely large and sparse matrices by (eventually) packed diagonals. Thus a preconditioner must fit to
this data structure. A well-known method for preconditioning is ILU (incomplete LU-decomposition)-
preconditioning. We execute a Gauss elimination for the sparse matrix and drop all fill-in that would
generate a nonzero element where we have a zero in the original matrix (= incomplete). In [13], p. 78 ff,
we report about ILU-PRES20 and ILU-BICO where we solve approximately the preconditioning equation
(4.2) Ad;, = r, by incomplete Gauss. This means a recursive procedure for the forward elimination that
occurs once, but the recursive backward substitution occurs in each iteration step and destroys the efficient
vectorization. In scalar mode the ILU-procedures are faster, but in vector mode they are slower than the
basic methods. This means that in this case (note that we have arbitrary consistency order) the global
information transfer is cheaper by the less efficient but efficiently vectorizable basic methods than by the
ILU-methods that need far less iterations but more computation time.

Presently we are experimenting with an incomplete inverse computed by incomplete Gauss-Jordan. With
an incomplete inverse we have in each iteration step for the approximate solution of (2.4) Ad; = r, an
additional MVM and thus no recursion, but the net effect is up to now dowtful. If we succeed in designing
an efficient preconditioner this can be included as well in the polyalgorithm.

The other type of preconditioner that we call DARE (data reduction)-method [14], tries to combine ideas
of multi-level methods (like MG) with CG methods. Because of time and space restrictions we present here
only the basic ideas. In order to couple distant variables we "drop” on the grid lines of one space direction
every second variable by replacing it with a cubic polynomial of the 4 neighboring remaining variables (of
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Fig. 4.1 Left: Cubic approach, right: DARE procedure.
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the same component for a system of PDEs), see Fig. 4.1, left. Correspondingly we drop every second
equation. Thus we have half the number of unknowns, defining a new reduction level. For 2-D or 3-D
problems we reduce cyclically in x, y or x, y, z directions until we have only a few equations. The set of
reduced matrices needs roughly the same storage as the original matrix. Then the DARE procedure is as
follows, see Fig. 4.1, right: We execute a "leading” PRES20 method that has a residual r,. Then we solve the
preconditioning equation (4.2) Ad, = r, on the lowest level, interpolate the dropped variables for the next
level, iterate some steps and “climb upwards® in the same way until the leading PRES20 where we execute
with this d, the pext iteration step, completing one cycle. Now the "polyalgorithm" is executed for the
iterative solution on each level (“iterate” in Fig. 4.1, right.). There we switch from PRES20 to ATPRES
(DAREJL) or in another version from PRES20 to BICO to ATPRES (DARE2). The DARE procedure needs
a really sophisticated control procedure for the switching and for the stopping of the iterations on each level,
for details see [14].

In the upper part of Table 4.1 we present the computation time for the complete solution of the 3-D test-
PDE (3.1) on a grid 40 x 40 x 40 with consistency orders 4, including the computation of error estimates,
starting from an interpolation of the boundary values. There are 192 000 unknowns. In the lower part we
present the same values for the 2-D test problem that results from the 3-D problem by dropping the z-
dependency and the 3rd PDE. For this 2-D case we use a 150 x 150 grid with consistency orders 4. We bhave
45 000 unknowns.

Table 4.1: Timings and MVM for the 3-D and 2-D test-PDE on a Siemens $600 (Fujitsu VP 2600).

R PRES20 BICO ATPRES POLY DARE1 DARE2
10 5.3 sec 6.1 sec 442 sec 5.0 sec 4.6 sec 4.6 sec
192 418 4596 192
MVM MVM MVM MVM
3.D
100 473 sec 17.6 sec 75.1 sec 20.6 sec 97.6 sec 199 sec
3128 1496 8138 1448
MVM MVM MVM MVM
10 3.5 sec 3.0 sec 771 sec 2.8 sec 1.3 sec 1.7 sec
‘ 1057 1566 48 888 1306
2-D MVM MVM MVM MVM
100 5.3 sec 5.5 sec 83.5 sec 5.3 sec 2.4 sec 23 sec
1691 3124 53 620 2722
MVM MVM MVM MVM

In Table 4.1 we compare for R = 10, 100 the timings for the different methods. The polyalgorithm is
always close to the best method. For 3-D at R = 10 DARE is just at the breakeven point and would pay only
for more than 40 grid lines in each space direction, for R = 100 we are below the breakeven point. For 2-D
DARE with 150 grid lines we are above the breakeven point and DARE pays. In Table 4.2 we compare the
polyalgorithm and DARE for different values of R with roughly the same conclusions. In 3-D the case R =
1000 is obviously a rather critical problem and cannot be solved with the standard parameters of FIDISOL
(we get a solution for other parameters). For R = 10 000 we have large error estimates.

42




Table 4.2: Timings for the 3-D and 2-D test-PDE on a Siemens S$600 (Fujitsu VP2600).

R 1 10 100 1000 10 000
POLY 5.0 sec 5.9 sec 20.6 sec *) > 15 min
DARE 1 4.6 sec 6.0 sec 97.6 sec &) 9.9 sec
3D DARE2 | 46sec 6.0 sec 199 sec »15min | 48.1sec
POLY 2.8 sec 3.8 sec 53 sec 6.5 sec 8.7 sec
2.D DARE 1 1.3 sec 1.5 sec 24 sec 29 sec 164 sec
DARE 2 1.7 sec 2.1 sec 2.3 sec 11.3 sec *)

(*) divergence with the standard parameters of FIDISOL

5. The symmetric general eigenvalue problem

In our research group a FEM kernel program package VECFEM (vectorized FEM) with optimal data
structures for vector computers has been developed [15]. Part of this project is the program FEMEPS (FEM
eigenproblem solver) for the computation of the extreme eigenvalues and eigenvectors of large sparse
symmetric general eigenproblems of type

Ax = ABx. (51)

For details and also for corresponding references see [16]. Here we discuss only the polyalgorithmic
properties. The symmetric matrices A and B are stored by (packed) diagonals.
The eigenvectors of the problem (5.1) are the stationary points x of the Rayleigh quotient

R(z) = (z'Az)/(z'Bz), z » 0. (52)

We have R(x) = A. As basic algorithm for the numerical solution we chousc a Rayleigh quotient
minimizing/maximizing technique. The algorithm is based on a local (with respect 1o the Hessean matrix of
R) conjugate gradient like method coupled with the mini/maximization of R. Usually the convergence is
rather slow. Therefore we use preconditioning by a few steps of the "classical’ CG method, thus
approximating a preconditioning by A™l. The whole algorithm is smoothed by a relation like (2.5). For the
computation of later eigenvectors, previous eigenvectors are eliminated by orthogonalization. Nevertheless
the method may "fall asleep”.
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Fig. 5.1 Reduction of the relative residual of (5.1).
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In this situation we use a polyalgorithm and switch to a projected Newton-method for (5.1) (with A from
R). Unfortunately the Newton matrix is nearly singular near eigenvectors and so the computation of the
Newton corrections by the CG method has poor convergence. Therefore we execute only a few iterations
of CG and use a "damped” Newton with an optimized relaxation factor. For the example of a combination
material of wood layers and a steel bar with 2000 degrees of freedom the reduction of the relative residual
of (5.1) is depicted in Fig. 5.1 over the MVM for the determination of the 4th eigenvector. When the
Rayleigh quotient method falls asleep, the Newton method brings down the residual to the requested
stopping criterion. Thus again a polyalgorithm helps.

6. Concluding remarks

Only if we consider such a wide scale of linear equations like those created by the FIDISOL program
package, we become aware how far we are still away from a satisfactory linear solver that is really robust
and efficient. We believe that also in the future there will be no single method that is efficient for all types
of problems. Therefore a black box linear solver must be a polyalgorithm with several methods. The problem
then is, how to choose the optimal method.

In our polyalgorithm we offer a scale of generalized CG methods with increasing robustness but at the
same time decreasing efficiency, this is the price to be paid for the robustness. If the convergence rate
exceeds certain limits a switch to the next method is executed. For very large problems that arise with the
advent of ever large supercomputers multilevel methods become a necessity. Here the polyalgorithm must
be shifted to the iterations on the levels of the method. What we need are "intelligent” polyalgorithmic linear
solvers.

A similar situation holds for the iterative solution of large eigenvalue problems. The efficient Rayleigh-
Quotient method may fail. Therefore an emergency exit to a slow but rather robust projected Newton
method leads to a polyalgorithm with an acceptable compromise between efficiency and robustness.
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by
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Abstract

Types of front-ends for scientific software will be distinguished: decision trees, knowledge-enhancement systems,
knowledge-enabling systems, and systems with higher levels of semantic help. Particular characteristics of statistical
front ends are (1) concemn with inference rather than diagnosis, (2) the high level of abstraction in the rules, and (3)
three-way communication between the back end, the front end and the user. The paper will discuss the construction
of front ends for statistical software, drawing on experiences in the development of GLIMPSE, a front end for
GLIM, and subsequent developments arising from the the FOCUS project. The tools required if front ends are to
evolve flexibly in response to new statistical techniques will be outlined.

0. Introduction

Suatistics demonstrates many interesting aspects of programming environments for scientific work. It is also a subject
in which substantial work has been done on the construction of software, including knowledge-based front ends
(KBFEs). This paper (1) looks at some existing types of front ends, (2) discusses some particular characieristics of
statistical front ends, (3) uses GLIMPSE, a KBFE for GLIM, and its successor FAST as an illustration of a particular
front end, and (4) ends with a discussion of future developments.

1. Types of Front End

There are various classes of advisory systems with increasingly complex structures.

1.1 Decision Trees

At each node of the tree the user is asked for information and his answer determines the branch taken. At the
bottom of each branch is a recipe for action. Note (i) the close relation to diagnostic keys, (i) that not all structured
information can be expressed conveniently by trees, and (ii}) that the expertise in such systems lies in the construction
of the tree.

1.2 Knowledge-Enhancement Systems (Hand)

In these the user in presented with material about some class of techniques, say multivariate analysis, structured
in the form of a graph through which (s)he can browse; there may be facilities for reading at different depths, for
getting references to further work, etc.. Note that there are no algorithms attached.

1.3 Knowledge-Enablement Systems

In these the previous type is augmented by algorithms which can carry out the techniques covered in the advice.
Syntactic help will be given in setting up the parameters for the algorithm required.

1.4 Systems with Higher-Level Guidance

These give guidance not just on executing a single procedure, such as fitting a regression equation, but aiso on

selecting the explanatory variables, checking the internal consistency of the fit, and so on. These will be exemplified
by GLIMPSE in section 4.
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2. Special Features of Statistical Advisory Systems

(i) Statistical systems deal with inference rather than diagnosis (compare medical systems). Statistical inference is
both a more complicated and less well-defined process than diagnosis.

() The rules in statistical systems are much more abstract than those in e.g. medical diagnosis systems. This is
because statistical techniques can be applied in many diverse applications, hence the rules in a statistical KBFE
must be sufficiently general o cover all these applications.

(ii)) Many expert systems involve a two-way interaction only between the user and the system. In statistical systems
there are both rules and an algorithmic engine, and the user communicates with both. This affects the design
of any shell used in constructing the system. Many standard shells support only two-way interaction between
user and expert system.

3. Basic Processes in Statistics

The contribution of statistics to a research programme involves three major components:

() Design: get maximum information on the quantities to be measured with the resources available.
(i) Analysis: find relevant parsimonious models that account for the systematic and random parts in the dawa.
(i) Inference: draw quantitative conclusions from the analysis.

Advisory systems may be designed for a single component, or all three in combination. GLIMPSE deals with ().
1 know of no system that covers all three components.

4. Designing the Interaction with the User

A major problem in designing an advisory system is 10 find ways of merging the system’s knowledge, encoded as
the rules of an abstract statistician, with the user’s knowledge.

Information exists in

(i) The user's mind
(if) The abstract statistician’s rules
(i) Output from the back end

Information may be processed by any of these sources and the results communicated to the others. The user interface
must be designed to facilitate exchange of information along all relevant pathways. Questioning is a major activity.

4.1 The form of the interaction in GLIMPSE

In GLIMPSE the user can follow the abstract statistician’s rules always, but (s)he does not have to accept its advice.
This non-authoritarianism allows the user’s knowledge to be fed into the system.

In GLIMPSE primitive steps in an analysis are called tasks. The abstract statistician’s strategies are expressed as
series of tasks. The user may execute any task or series of tasks without consulting the abstract statistician. This
produces a transparent system, i.c. a glass-sided box rather than a black box. The user may construct new strategies
if they are expressible using the tasks provided.

In GLIMPSE the user can respond to a question in various ways:

() What answers are possible?
(1) What does a jargon word, e.g. 'deviance’, mean?
(i) What is the background to the question?
(iv) Why is the question being asked?
(v) What would the system suggest?
(vl) What was the question again?

It is very imporant that a user be able w0 back-track and give a revised answer (0 a previous quesuon that was
answered wrongly.
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6. Components of GLIMPSE

6.1 The Task Language
GLIMPSE supports a task language, which is at a higher level than that of its back end, GLIM. A typical task is:

plotgraph (log(y) vs log(z))
check (y in-range < 0.100 > & [(y))
find changes in fit over 3.5

All tasks are translated into GLIM macros and sent to GLIM (0 be executed. The results are then displayed, perhaps
after some post-processing. Tasks are the level-0 help in GLIMPSE, and form a knowledge-enablement system. On
top of this two further levels of help are constructed, level-1 or specific help, and level-2 or strategic help. These
higher levels of help are built round the idea of an activity in an analysis.

6.2 Activities in GLIMPSE
These are:

(i) Data input. The data are read or typed in.

() Data definition. The user is asked about the properties of the variables read in under (i) and about the relations
between them.

(1) Daza validation. The data values are checked against the definitions and any inconsistencies pointed out.

(iv) Data exploration. Properties of the response variable and relations between the response variable and each of
the explanatory variables are explored with a view to defining a subclass of GLMs which it would be useful to
explore formally.

(v) Mode! selection. Using the error distribution and link function suggested by (iv), the effects of the explanatory
variables are tested by model fitting, and a set of parsimonious models is produced.

(vi) Model checking. A model produced by (v) can be checked by the use of a battery of model-checking techniques
to establish its internal consistency.

Level-1 (specific) help is concemed with components of an activity, for example the relation between the response
variable and a particular explanatory variable in data exploration. Level-2 (strategic) help gives advice on a whole
activity. Thus for data exploration, level-2 help looks first at properties of the response variable itself, followed by
its relation to each of the possible explanatory variables.

The hierarchical structure of the help can be continued by defining a level-3 help which, by providing advice for
moving between activities, would aliow help with an entire analysis. If then help is provided with both the design
and inference components, the resulting level-4 help would cover a whole cycle (design - analysis - inference) of a
research programme.

6.3 On-Line Documentation

This comprises text files dealing with the task language, and background information on each of the activities, the
strategies employed, and the general and specific tasks available at that activity. A major problem in providing the
background information is to decide on the appropriate technical level to assume. Something must be assumed,
otherwise one is committed 10 writing a whole statistical textbook. Provision of different levels of explanation is a
partial solution, but was not implemented in GLIMPSE, mainly because of lack of time.

6.4 The Lexicon

This allows the user to look up unfamiliar words that may be met during a session. The lexicon is a simple browser,
with definitions at each node, and lists of words defined in associated nodes. Again there are problems of how far
down the definitions should go.
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6.5 The Abstract Statistician

This contains the statistical expertise of the system, encoded as Prolog rules. It uses an adaptation of an expert-
system shell called APES (augmented Prolog for expert systems); APES supports query-the-user, which automatically
queries the user for information required but not found in the rulebase, and provides explanations of how the user
has arrived at a particular place in the strategy, and why a particular question is being asked. The rules in the
abstract statistician were developed using the past experience of the statisticians in the project, and tested on a
diverse collection of data sets that covered much of the range of GLMs. Like the rest of the front end this part was
written in Prolog.

7. Future Prospects

The construction of advisory systems in statistics is still at an early stage. We have much to learn about (i) the
development of strategies for statistical analysis, and (ii) the development of computing tools (o produce systems
that users will find easy and convenient.

7.1 The Development of Strategies

Current strategies arise from the experience of developers, and are tested by trying them out on a range of data sets.
The process of knowledge acquisition by the systemn can follow at least three routes: (i) the developers contemplate
their navels and produce rules, (i) the developers employ a knowledge-acquisition specialist who questions them
about their working procedures and from the results produces rules, which are then fed back to the developers for
amendment, and (i) the developers automate the process by sitting experts at the ierminal with a some training sets
of data, and a program induces their rules from their behaviour.

Route (iil) was used by Gale and Pregibon in the project Student. Note that different experts will produce different
rule sets, and that it may impossible to fuse several sets of rules into a consistent whole. Also the process is very
dependent on the choice of training sets. Routes (i) and (i) are less dependent on the training sets, because the
developers are drawing on their past experience in analysing data, and taking account of what they have leamt in
the process. Training sets remain important, however, as a way of testing the rules once formulated. There can be
no question of any formal proof that a set of rules will always work; almost centainly it will be possible to design
pathological data sets for which any given rule-set will fail.

There is a danger that the strategies embedded in a successful advisory system will become frozen and inflexible,
or will depend entirely on the originators for revision. If possible, this should be avoided.

7.2 The Evolution of Strategies

In GLIMPSE the user may execute a personal strategy provided that it can be expressed as a series of tasks already
defined in the task language. However (s)he cannot store such such a strategy in a form which others can retrieve
and use for themselves. To enable this to be done we need some extensions to the tools currently available.

First, the task language must be extended to include the standard notion of procedures, and 10 have the standard
control structures for looping and branching. Secondly, because questioning is such a basic activity, the facilities for
querying the user, which in GLIMPSE are part of the APES shell, must be brought up to a level where the developer
of a new strategy can employ them in his procedures. (An analogous facility is included in the latest version of
Genstat 5, and allows an interaclive sysiem (o become a conversational one.) Thirdly, we need a way in which a
strategy-developer can define the syntax and semantics of new tasks, so that new strategies are not restricted to the
existing set of tasks.

None of these requirements makes excessive demands on current computing technology, though the third one in
particular will need very careful design if it is to be straightforward for a developer to use.

If these facilities existed the way would be open for the evolution of strategies; new strategies could be defined,
stored, retrieved by others, and compared with the existing standard. (To establish methods of comparison will not
be casy!) This evolution would not be Darwinian, because it would not proceed by the occurrence of ‘random’
mutations followed by selection. New strategies would arise from new theory and new ideas by statisticians; the
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selection component would still be there, of course, and progress could well be fast. It should cenainly be faster
than Darwinian evolution.

7.3 Future Computing Environments

An example of what sort of computing environment the developer of an advisory sysiem can expect in the near
future is provided by the FOCUS project. This is being developed under the Esprit II programme of the EEC,
with workers in the UK., Belgium, Netherlands, Germany and Spain taking part. The project aims 1o develop a
twolkit for the construction of front ends for scientific software. Included are both libraries (called open systems) and
packages (called closed systems). The architecture which has been developed for FOCUS involves three separate
Prolog systems which converse with each other by sending standardised messages. Components of the architecture
! include:

(1) The harness: this includes a presentation layer, which handles the interactions with the user on the screen, and
dialogue control, which deals with the message passing.
(i) The back-end manager, which handles the traffic between the front ends and the back ends.
(i) The problem solver. This provides an inference engine, which includes a reason-maintenance system 10 ensure
that the state of a system remains consistent when previous assertions are withdrawn; it can also provide
explanations of failure.

In addition some general tools will be provided to help the constructor of a knowledge-based module (front end).
One is

(v) On-line documentation tool. This allows the mixing of text and pictures, combined with a hypertext-like
framework for setting up reading paths for the user.

The back-end manager will allow the developer to access several back ends; one of which will be a data-manager
for the storage, manipulation and retrieval of basic numerical data structures such as vectors and matrices. Another
might be a graphics package for particular types of picture. Note that the components listed above need not all
reside on the same machine; the architecture is designed to make it possible to use different components on different
machines.

8. Conclusion

Statisticians have much work to do in developing large-scale strategies of design, analysis, and inference. This work
will need to be done by those whose orientation is towards science, rather than mathematics.

Computing science has still to develop tool kits for the new generation of machines that will use their power while
at the same time giving the developer an interface that (s)he can use without detailed knowledge of the internal
structure.

Statisticians and computing scientists need to build close working relationships if useful statistical advisory systems
. are to appear.
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Abstract

A vast collection of mathematical and statistical software is now available for use by sci-
entists and engineers in their modeling efforts. This software represents a significant source
of mathematical expertise, created and maintained at considerable expense. Unfortunately, the
heterogeneity of the collection makes it difficult simply to determine what software is available to
solve a given problem. In mathematical problem-solving environments of the future such ques-
tions will be fielded by expert software advisory systems. In this paper we describe knowledge
engineering techniques and associated selection heuristics which can be used to develop such
systems. A prototype under development for the Guide to Available Mathematical Software
project at the National Institute of Standards and Technology is demonstrated.

1 Introduction

Users of large scientific computing facilities often have substantial collections of mathematical and
statistical problem-solving tools at their disposal. At the National Institute of Standards and
Technology (NIST), for example, computer users may choose from some 5000 software modules
contained in 40 packages. With seven computer systems available, this amounts to nearly 18000
module implementations. This bounty has placed a great burden on computer support staffs who
wish to provide the most appropriate tools to their clients for a given task. In such an environment,
it is a tedious and error-prone task simply to determine what software is available to solve a given
problem on a given computing device. The difficulty lies both in the volume and heterogeneous
nature of information describing the software and in the task of matching roughly defined problems
with sharply defined software.

Users often turn to human experts for help with software/hardware selection. Usually, such
advice is dispensed by computer center consultants or numerical analysts, although neither is par-
ticularly suited to this task. Computer consultants often do not have the mathematical knowledge
to correctly match problems with software, and numerical analysts, while in possession of very
deep knowledge in specific areas, do not have sufficient breadth of knowledge to field all queries.
Neither have convenient access to software information. Initial user contacts are best handled by
mathematical software generalists, i.e., consultants with (a) sufficient mathematical knowledge to

*Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States.
!Electronic mail: boisvert@cam.nist.gov or ribQnistcs2. bitnet
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Table 1: Objects in the GAMS Knowledge Base

Object Typical Properties Count
Problem Name, description, verbose description 783
Package Name, description, type, portability, developer 40
Module Name, description, how to use 5162
Computer Name, location, operating system, compilers 8
Package Implementation | Version, access procedures, support level 88
Module Implementation | Precision, comment 17972

guide users from vague problem descriptions to more precise ones suitable for software selection, (b)
ready access to up-to-date information about existing computing devices and the software available
there, and (c) the ability to discriminate between software for solving similar problems based upon
the user’s individual needs. If satisfactory results are not obtained in such a consultation, then
referral to a specialist is indicated.

It has been widely recognized that automated systems are quite well suited to play the role
of mathematical software advisor, and many computer centers have developed systems of this type
for their users. Several tools have been developed to aid in the construction of such systems [2], [8],
[9]. In recent years there has been an interest in exploring how techniques of knowledge engineering
and expert systems can be used to improve their performance [1], [5}, [6], [7], [10], [11], [12].

In this paper we will describe knowledge engineering techniques and associated selection heuris-
tics which can be used to develop systems which perform at the level of 2 mathematical software
generalist. These techniques are being used in the further development of the GAMS Interac-
tive Consultant, the advisory system associated with the NIST Guide to Available Mathematical
Software (GAMS) project [2].

2 Knowledge Engineering for Software Selection

The GAMS knowledge base contains the data necessary to support various tasks associated with
mathematical software selection. It is a collection of objects and links of various types. The object
types define the kinds of objects in our knowledge base; all ohjects of a given type share a fixed set
of properties which distinguish them from other objects of the same type. The link types define the
ways in which objects are interrelated. Tables 1 and 2 summarize the basic object and link types.
These are described in detail in [1], and their implementation in a particular database system is
described in [4]. Table 1 also lists the number of each object in the current GAMS knowledge base.

2.1 Mathematical Knowledge

Problem objects in the GAMS knowledge base represent mathematical problem domains; the links
show the inclusion of specific problem domains within more general ones. In effect, this defines
a tree-structured taxonomy of mathematical problems. The GAMS problem taxonomy is quite
detailed, containing about 783 problems extending to seven tree levels. The top-most level of the
system specifies the broadest problem classes such as Linear Algebra, Differential and Integral
Equations, and Statistics. An example of a complete sub-tree rooted at a particular problem is
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Table 2: Links in the GAMS Knowledge Base

From To Implied relation
Problem Problem is an instance of
Module Package is part of
Module Problem applies to
Module Module is usually used with
Package implementation | Computer is available on
Module implementation | Package implementation | is part of
Module implementation | Module implementation | is a version of

Table 3: Subtree F of the Problem Classification Scheme

F. Solution of nonlinear equations

Fl. Single equation

Fla. Polynomial

Flal. Real coefficients

Fla2. Complex coefficients

Flb. Nonpolynomial

F2. System of equations

F3. Service routines (e.g., check user-supplied derivatives)

given in Table 3; a complete listing may be found in [3].

The problem taxonomy can be used by advisory systems as a decision tree to lead users
from very general to very precise problem statements. If one or more classifications are given to
each software module, then the system can present users with a list of software for use in solving
problems of any given class. The GAMS problem-taxonomy has been used in this way by a number
of advisory systems!, including our own [1].

There are difficulties with this approach, however. Many mathematical problems are suf-
ficiently common and well-understood that there are many software modules available for their
solution. For example, the GAMS database contains 34 modules with classification F2 (Solution of
a system of nonlinear equations). Users need further help in discriminating among these choices.
If the problem taxonomy is the only method of navigation available to an advisory system, then
the only way to reduce the number of modules per class is to make the problem taxonomy more
detailed. In some cases this is feasible, but this does not provide a satisfactory general solution.
Adding many levels of refinement to the problem taxonomy soon leads to an explosion of nodes,
most of which have no software at all. Eventually, further refinement based upon mathematical
problem alone is not possible. At this stage, the only difference between modules are properties
of the algorithm used or the details of its implementation as computer software. We feel that this
type of breakdown is inappropriate in a problem taxonomy.

The GAMS Interactive Consultant currently allows users to declare certain properties required
of acceptable software modules. In particular, users need only see modules available on particular
computer systems, in particular software packages, in a particular arithmetic precision, or in non-

1At Amoco Production Research, University of Texas Center for High Performance Computing, Lawrence Liver-
more National Laboratory, and the Konrad-Zuse-Zentrum fir Informationstechnik Berlin, for example.
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Table 4: Module Features for Class Ela

Feature Type Feature
1 | type of problem piecewise polynomial (PP)linterpolation
2 osculatory PP interpolation
3 optimal interpolation (determine range of values)
4 | visual property as smooth as possible (spline)
5 preserve convexity
6 preserve monotonicity
7 Akima smoothing
8 | polynomial degree | quadratic
9 cubic
10 quintic
11 user selected
12 | end condition natural (zero derivatives)
13 user-supplies derivatives
14 software estimates derivatives
15 not-a-knot (extra continuity near ends)
16 periodic
17 compatible with monotonicity
18 | other feature user supplies knots (B-spline breakpoints)

proprietary packages. Although using this information can sometimes significantly reduce the
number of modules presented to the user, it is often not enough.

2.2 Extended problem/software knowledge

In order to further discriminate between modules in a given problem class an advisory system must
have further information about the distinguishing properties of each module. These properties a:e
necessarily problem-dependent, and can only be ascertained after a detailed study of all of the
software modules in a given class. For example, consider the class Ela, Interpolation of univariate
data by polynomial splines (piecewise polynomials). The GAMS database contains 53 modules with
this classification, although only about 34 remain after eliminating those which are double precision
versions of others. These are distinguished by characteristics such as the polynomial degree, the
amount of smoothness, how end conditions are handled, and so on.

In general, after surveying the software in a given class, one discovers a set of features which
can be partitioned into a small set of feature types. Thus, we extend our knowledge base by defining
a new object, the feature. Each feature has a feature type, and is linked to a particular class. The
features of class Ela are given in Table 4.

We next need a way to encode information about which features apply to each software module
in a given class. To do this we associate an integer with each (module, class, feature) tuple that
indicates the status of the feature for the given module in the given class. Possible values are

1 feature is always present
0 feature is optionally present
-1 module does not have this feature

The set of feature status indicators associated with a given (module, class) pair is called 2 module
feature vector. The module feature vectors for class Ela are given in Table 5.
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Table 5: Module Feature Vectors for Class Ela
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SLATEC
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Module

A507

A514
A547

A574
A592

A600

ICSCCU | IMSL
ICSICU | IMSL

ICSPLN | IMSL

IQHSCU | IMSL

BSINT | IMSL/MATH
CSAKM | IMSL/MATH
CSCON | IMSL/MATH
CSDEC | IMSL/MATH

CSHER |IMSL/MATH |-1
CSINT | IMSL/MATH
CSPER | IMSL/MATH

QDDER | IMSL/MATH
QDVAL | IMSL/MATH

SPISC1

E01BAF | NAG

E0IBEF | NAG

E02BAF | NAG

PCHEZ | NMS

PCHEZ | NMS

CSPF1
CSPIN
E1ACS
E1AM

SPLINE | SCRUNCH
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BINTK

PCHIC

PCHIM
PCHSP
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We admit more than one entry per module in the feature table for a given class. This is neces-
sary in cases when certain features interact. For example, in Ela module PCHEZ performs either
interpolation by cubic splines with not-a-knot end conditions or by monotonicity-preserving C?
cubics with end conditions obtained by estimating derivatives which are then adjusted to preserve
local monotonicity. In this case, two distinct entries for PCHEZ are stored.

We have prepared extended problem/software data for a number of other GAMS problem
classes, including C10al (Bessel functions J, Y, and H of real argument and integer order), D2al
(Solution of systems of linear equations, including matrix inverses, and LU and related decomposi-
tions for real nonsymmetric matrices), I2bla (Second order linear elliptic boundary value problems,
and I2blala (Poisson or Helmholtz equation on a rectangular domain).

Finally, additional textual data describing each feature and feature type could also be stored
in the knowledge base to allow advisors to provide users with further help in feature selection.

3 Selection Heuristics

We next describe a set of heuristics which can be used with the extended problem/software knowl-
edge to aid in the selection of appropriate mathematical software. We assume that we are positioned
at a leaf node of the problem taxonomy at which many modules have been classified. Qur goal is
to present the user with as few modules as possible. Initially, all modules are candidates. We then
ask the user a sequence of questions, each of which has the potential of reducing the number of
modules. The strategy is roughly as follows:

Module Reduction Strategy

mlist + list of all modules in class;

foreach feature type until (length(mlist)==1 or user is satisfied) do:
flist «~ list of features of this type possessed by modules in mlist;
prompt user for desired features from flist;
eliminate inappropriate modules from mlist;
if (length(mlist)==0) recover;

Note that only those features possessed by modules in the current module list are displayed at each
stage. In this way the user need only make decisions about features which make a difference.

The advisor maintains a requirements vector which encodes the user’s desires. The ith element
of this vector gives the user’s opinion of the sth feature. The possible values are:

1 feature is required
0 no opinion
-1 feature is forbidden

Initially, the requirements vector is zeroed. At each stage of module reduction, entries corresponding
to the current feature type may be changed. In Table 6 we present a truth table which may be
used to evaluate the user’s opinion of a particular feature. A rejection of any feature is ground for
rejecting the module. Note that we cannot immediately reject a module whose optional feature is
forbidden by the user. In this case there may be acceptable alternatives. Here we reject only when
all optional features of a given type are forbidden by the user. This is based on the assumption
that all alternatives are enumerated in the features of a given type.

It is possible that a user’s requirements may exclude all remaining modules. This may mean
that there is indeed no software which satisfies the user’s requirements. However, it is often the
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Table 6: Truth Table for Evaluating User Opinion of Feature

User
1 0 -1
1| Accept Accept Reject
Module 0 | Accept Accept Conditional
-1 1 Reject Accept Accept

case that requirements can be relaxed by the user, and we have a recovery strategy to handle this.
When all modules fail we present the user with a list of the current requirements, indicating in each
case the number of modules which become available if the requirement is relaxed. The user may
relax requirements until modules become available, in which case the reduction strategy resumes
at the smallest numbered feature type which was relaxed. The availability of such a backtracking
scheme makes the order in which questions are asked of the user less important.

More than one module may remain applicable, even after all user requirements have been
ascertained. In this case, information implied by the requirements vector can be used to order
the remaining modules so that the most likely matches appear first. For each module we count
the number of features required by the module (extra properties) and the number of optional
module features about which the user has no opinion (extra options). We then sort the modules
in increasing order of extra properties; ties are sorted in increasing order of extra options. In this
way the modules presented first are the closest match to user requirements.

4 Example

In this section we present a sample user session for a prototype advisory system which utilizes the
knowledge base for class Ela and the selection heuristics outlined in the previous section. User
responses are preceded by >>>.

There are 35 possible module selecticns. Would you like to try to reduce this? >>> y
Which type of problem?

1 : piecevise polynomial (PP) interpolation [ 29 modules]

2 : osculatory PP interpolation [ 5 modules]

3 : optimal interpolation (determine range of values) [ 1 modules]

Enter number(s) of required items, -number for items that must not be present.
If you have no opinion, then simply press returm. >>> 1

There are now 29 possible module selections. Each satisfies the following:
1. type of problem is piecewise polynomial (PP) interpolation
VWould you like to try to further reduce the number of module selectionz? >>> y

Which visual property?
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8 : as smooth as possible (spline) [ 16 modules]
9 : preserve convexity [ 1 modules]
10 : preserve monotonicity { 5 modules]
11 : Akima’s smoothing method { 2 modules]

Enter number(s) of required items, -number for items that must not be present.
If you have no opinion, then simply press retura. >>> 8 10 -11

No modules satisfy all your requirements, which are :

1. type of problem is piscewise polynomial (PP) interpolation [ 2 modules)]

; 8. visual property is as smooth as possible (spline) [ 5 modules]
X 10. visual property is preserve monotonicity [ 16 modules]
; 11. visual property is NOT Akima’s smoothing method [ 0 modules]

The number in brackets tells you how many selections become available if this
requirement is removed. Which, if any, of these can be removed? >>> 8 11

There are now 5 possible module selections. Each satisfies the following:

1. type of problem is piecewise polynomial (PP) interpolation
10. visual property is preserve monotonicity

Would you like to try to further reduce the number of module selections? >>> y

! All remaining module selections have the following polynomial degree : cubic
) Is this acceptable? >>> y

Which end condition?

13 : user-supplies derivatives { 1 modules]
14 : software estimates derivatives [ & modules]
15 : not-a-knot (extra continuity near ends) [ 1 modules]
! 17 : compatible with momotonicity { 5 modules]

Enter number(s) of required items, -number for items that must not be present.
If you have no opinion, then simply press return. >>> 14 17

There are & modules to display. Each satisfies the following:

1. type of problem is piecewise polynomial (PP) interpolation
5. polynomial degree is cubic
10. visual property is preserve monotonicity
14. end condition is software estimates derivatives
17. end condition is compatible with monotomicity

Modules which most closely match your requirements will be listed first.

EO1BEF in NAG (Module 1 of 6)
PCHEZ in NMS (Module 2 of 5)
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E1AM in the Scientific Desk (Module 3 of &)
PCHIM in SLATEC (Module 4 of 5)
PCHIC in SLATEC (Module 5 of 5)

Additional properties :
13. end condition is user-supplies derivatives (optional)
15. end condition is not-a-knot (extra continuity near ends) (optional)

In this example, the original 35 possibilities are pared down to 5. If the user had instead
selected features 13 or 15 in the last query then all but one would have been eliminated. The five
modules remaining are, in fact, very similar. All but PCHIC are versions of Fred Fritsch’s routine
PCHIM. PCHIC, also developed by Fritsch, is an extension of PCHIM with additional control
over end conditions. At this point other selection criteria already present in our system, such as
which machine the software is available on, its portability, and precision could now be applied.
For example, at NIST the EIAM and PCHEZ are available only on PCs, EO1BEF is available
only on our central mainframes, while PCHIM and PCHIC are available on local mainframes,
minicomputers, workstations, and can be easily ported to PCs.

5 Conclusions

We have presented knowledge representation techniques and heuristics which can be used to enhance
the performance of mathematical software selection systems based upon problem taxonomies. The
extended problem/software data provides a detailed representation of the distinguishing features
of software for a particular problem. The representation is quite compact, although an extensive
survey of existing software is required to generate it. This is not surprising; if the system is to
perform at the level of a human expert, then it is not unreasonable to require a human to teach it.
Fortunately, the required information is local to a given problem, and hence need only be developed
for problem classes in which an overabundance of software exists.

The selection heuristics we have developed allow an advisory system to efficiently find the
closest match between user requirements and software features. Our heuristics do address the case
in which the user inadvertently eliminates all software modules from consideration. Finally, our
heuristics allow a selection system to easily explain why any given module is or is not acceptable.
We have developed a prototype software advisor based on these heuristics which we plan to integrate
into the GAMS Interactive Consultant in the near future. We believe that these techniques are
sufficient to allow a software advisor to perform at the level of a mathematical software generalist.

Several areas have no' yet been adequately addressed. We have not attempted to provide
support for deep mathematical knowledge required to support selection based upon an evaluation
of the software’s performunce. This is a much more difficult problem for which there have been
some recent advances [10]. We have also not addressed the problem of what to do when there are
really no suitable software modules. In this case we must find a way to help users reformulate their
problem in such as way as to allow software for some other problem to be used, if possible.
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Abstract

We discuss fractals in quaternions and their application to computer graphics. First we describe
computation and visualization of Mandelbrot set for f(z) = 23 + ¢ in quaternions.

Quaternions can be conveniently used to represent operations in three dimensional space, in-
cluding rotations, projections and affine transformations. It is shown that a three dimensional
tree-like pattern can be generated using similar contraction mapping in terms of quaternion func-
tions to a triangle in the three dimensional space. Our quaternion functions consist of components
for contraction, rotation and reflection in the three dimensional space. Ray-tracing technique is
used to generate a scene with trees.

1 Introduction

With a simple mathematical formula and process, fractals, surprisingly mysterious and sophisticated
graphic patterns, can be generated and much attention has been paid to fractals not only in mathe-
matics but also in computer graphics. Fractals in three dimensional space or higher dimensional space
are theoretically possible, but so far mainly fractals in two dimensional space have been investigated
in complex dynamics. In computer graphics, it is quite natural to seek fractals in three dimensional
space but as a rather rare and exceptional case in three dimensional space, fractal techniques has been
applied to create mountain views and cliff views[1][2]. In this paper we consider fractals in higher di-
mensional space related to quaternions and their application to computer graphics. Quaternions have
long been known, but it is quite recent that its importance in robotics and computer graphics was
recognized and extensive research has been carried out in these two or three years. There are already
papers on fractal patterns produced by quadratic quaternions functions set[2] and the Julia set for the
quaternion iteration function 2% + ¢ set[3]. We discuss the Mandelbrot set for z + ¢ in quaternions.
Computation of fractals is simple but cpu-time consuming. Using a super computer FACOM VP-
2600/10, the cpu-time could be reduced to about one fifteenth of that in scalar mode. Visualization of
fractals in higher dimensional space is an interesting example of visualization in scientific computation.
Quaternions can be conveniently used to represent operations in three dimensional space, including
rotations, projections and affine transformations. As von Koch’s two dimensional self-similar curve or
Hata[4)’s cedar leave pattern in a plane is generated by repeated application of two similar contraction
mappings to a triangle, we will show in the section 3 that a three dimensional tree-like pattern can
be generated using similar contraction mapping to a triangle in the three dimensional space. While
the mapping functions for von Koch’s curve are complex functions, our similar mapping functions are
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quaternion functions. Our quaternion functions consist of components for contraction, rotation and
reflection in the three dimensional space. Ray-tracing technique is used to generate a scene with trees.

2 Mandelbrot Set in Quaternions

2.1 Quaternions and the Mandelbrot Set

A quaternion value ¢ is a four-tuple consisting of one real part and three imaginaries,
¢ = ¢ +ait+agijt+ak (1)

where i, j and k are imaginary units and the following equations hold:

2 = 2 = kK = -, (2)
ko= 1, ki = 3, i = k, (3)
kj = -1, ik = -3, ji = ~k. (4)

Mathematically quaternions form a noncommutative division ring. We define the norm of ¢ by

gl = \e2+a?+a?+g} (5)
It should be noted that
¢ = @-q-¢—qk+2¢(qi+qii+ak) (6)
and, if ¢, = 0 then, we have
@ = -¢-q-qf (7)

As a natural extension of the Mandelbrot set in the complex plane, we treat the following Mandelbrot
set M in quaternions:

M = {u: lim fi(za) /=00, f(q) =0} (8)
where
fu@) = ¢+ ®
and f2(q) denotes f,(fu(-.-(fu(g))-..)). In this particular case of the function f,(g), we have
g = O. (10)

In actual computation, we define the sequence {g,} by

| g =0 (11)
Gny1 = q?.+#, n=012,--,Nnasr. (12)

If the following condition is satisfied for some n < nmqr,

lignsall > 1+ |ull (13)

62




then we consider the sequence {g,} has diverged. For a particular value of u, we can compute the
value of n for which the divergence condition is satisfied first, or n = nmaz,where the sequence does
not diverge. If n = ny,., we consider n = 0. If we define the four dimensional mesh points with
equidistance, satisfying:

Brmin < Hr < Brmaz (14)
Himin < Mi < Himaz (15)
Bimin < Bj < Mimaz (16)
Brkmin < Bk < Bikmaz (17)

then we can compute the value of the above n for each mesh point. Thus we can obtain the four
dimensional integer array of n, where each element satisfies 0 < n < n,,,.. We define color for each
point according to the value of IQ = mod(n,7) as shown in Tablel. We obtain the color chart of

Table 1: Color mapping table for 1Q
1Q 0 1 2 3 ] 4 5 6
color || black | blue | green | cyan | red | magenta | yellow

four dimensional space. It is not easy to visualize the four dimensional space, we give a series of two
dimensional cross section of the four dimensional space shown in Figs.1 ~ 5 .

2.2 Computation of the Mandelbrot Set on Supercomputer

Although computation of the Mandelbrot set is conceptually very simple, it is very computationally
intensive. Computation for individual mesh points are logically independent and parallel computation
can be carried out. On arithmetic pipeline vector computers, computations for multiple mesh points
can be vectorized. For certain values of u, the sequence {g,} diverges for a small value of n. Once
computation for a certain point diverges, then the point is removed from the set of points for com-
putation. Namely the vector length of computation is reducing as iteration proceeds. If we treat as
many points as possible, the vector length becomes longer but the required amount of main memory
becomes also larger. When we treat the four dimensional mesh points, then the required amount
of memory is very large. Computation for mesh points on a two dimensional cross section plane is
reasonable both for vector length and for required amount of main memory. Table 3 gives an example
of CPU time on FACOM VP-2600/10 for computation of the Mandelbrot set given in Fig.1. The ratio
of CPU time of the vector mode to the scalar mode attains 15 times and it shows the effectiveness of
vector computation.

Table 2: CPU time for computation of the Mandelbrot set in Fig. 1

number of CPU time for CPU time for | ratio of CPU time
mesh point | scalar mode: T, | vector mode: T, k
1024 x 1024 37.8[sec] 2.40[sec] 15.8
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2.3 Perspective View of the Three Dimensional Cross Section

A three-dimensional cross section of the Mandelbrot set in the four dimensional space is also given in
Fig.6, which is produced by the ray-tracing technique.

3 Generation of Fractals in Quaternion and its Application to
Computer Graphics

3.1 Vectors in Three Dimensional Space as Quaternions

Suppose that

q = 0, (18)
G =%, ¢ = ¥ & = 2 (19)

then the quaternion ¢
q = tz+jy+kz (20)

represents a point (z,¥, z) in the three dimensional space. If a quaternion ¢ represents a unit vector,
then we have ¢? = —1. : ‘

The largest merit of quaternions is their ability to represent rotations in the three dimensional
space. Let us denote the axis of rotation by n, where n, = 0. We assume that rotation of the vector
v, where v, = 0, around the axis n by the angle @ gives the vector u, where u, = 0. It is known that
the following equation holds:

u = qug! (21)
where
[/ 7 0
¢ = cosg + ingsin g + jnysin 3 + kn, sin 3 (22)
or in short
8 0
g = cos§-+nsin§ (23)
From the basic equations on 7, j and k, it can be easily verified that
6 . .6 . .0 . 6
¢! = cosE -—m_.,sm-2- = Jnysing — kn_ sin 2 (24)
or
-1 .
= - sin - 25
q cos 5 — msin g (25)

It should be noted that the representation of rotation by quaternions is a very concise form and
there is no redundancy. A rotation in the three dimensional space can be represented by a 3 x 3
matrix. It requires 9 elements and redundancy of the representation is much larger than quaternion
representation.

Projection and reflection of a vector can be also conveniently represented using quaternions. If v
is a vector( i.e. v, = 0), and n is a unit vector, then we have the following:
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1. The projection of v onto Line(n) is given by *=3*=.
2. The projection of v onto Plane(n) is given by 322,
3. The reflection of v across Line(n) is given by —nvn.

4. The reflection of v across Plane(n) is nvn.

The situation is illustrated in Fig.7. It should be noted that representation of projection and reflection

Ju—-nuvn
—nvn 2 v

T

|
N I
AN |
N\ =3
Plane(n)

N\
AN

nvn

Fig. 7: Projection and reflection

is again very compact.

3.2 Generation of Three Dimensional Fractals Using Quaternions and its Appli-
cation to Computer Graphics

Koch’s curve is a famous example of fractals in the two dimensional complex plane, which can be
generated by repeated application of two self-similar contraction mapping functions to a triangle.
Hata showed that a cedar leave-like pattern can be generated by two complex functions similar to
Koch’s function to a triangle. Hata’s functions are given by:

Fi(z) = (%+%)2 (26)
Fi(z) = §2+% (27)

We now describe generation of fractal pattern in the three dimensional space. Let us consider
AABC in Fig.8, where a and 8 are parametersand 0 < a <1, 0< 8 <1, a?+ % < 1. We assume
the following mapping process:
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AABC — AA'B'C : rotation around the y-axis by the angle 7 + 6.
AA'B'C — AA"B'C : contraction with the scaling factor \/a? + B2.
AA"B"C —» AA"B™C : reflection across the zy-plane.

A(0,0,1)

. B(a,0,8), A™

BII

BI
AI

Fig. 8: Mapping by f;(v)

If we denote the mapping function for the above process by f;(v) then, we have

filv) = Ja? + Bkqugy 'k

where
v = iz+4jy+kz
= ¢ (w+0)+'si (7r+9)
e R LR VI
a
cosf = —me——
a’+
sinf = A
at+f
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B 14

Fig. 9:Mapping by f2(v)

Let us consider the following mapping process shown in Fig.9.

NAABC — AAB'C : rotation around the a-axis by the angle ¢.
AAB'C — AA"B"C : contraction with the scaling factor 1 — a® — 3.
AA"B"C — AAB"C'" : translation with the distance a? + 2.

If we denote the mapping function for the above process by f2(v), then we have

f(v) = (1-o® - )pve’ +k(a® +67) (33)
where
v = iz+4jy+kz (34)
@ = cos“—o-+ksin-‘£ (35)
2 2

We give Fig.10 as an example of three dimensional tree-like fractal patterns obtained by repeatedly
applying fi(v) and f2(v) to AABC.

It should be noted that the fractal pattern in Fig.10 is a truly three dimensional fractal pattern
and it is not the pattern which is obtained by rotation of a fractal pattern in the two dimensional
space. The pattern in Fig.10 is an interesting pattern in itself. Using the ray-tracing technique, Fig.11
was produced using the pattern in Fig.10.
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4 Conclusion

We give a series of two dimensional cross section views of the four dimensional Mandelbrot set for
f(2) = 2% + ¢, and a perspective view of the three dimensional cross section. Although computa-
tion of the Mandelbrot set is cpu-time consuming, the computation can be carried out efficiently on
supercomputers.

It was shown that a three dimensional tree-like fractal pattern can be generated using similar con-
traction mappings in terms of quaternion functions. The ability of quaternions to represent operations
in the three dimensional space was effectively used. Further applications of quaternions to computer
graphics seems to be promising.
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Fig. 1: -1.35 < pu, <1.35, -1.35< y; < 1.35, Fig. 2: -1.35< p, <1.35, -1.35< p; < 1.35,

p; =06, p=0 i =07, m=0

Fig. 3: —1.35 < u, < 1.35, —1.35< y; < 1.35, Fig. 4: —1.35 < u, < 1.35, —-1.35 < p; < 1.35,

p;i =08, ur=0 ui=11l, =0
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Fig. 50 —0.250 < p, < —0.225, 0.590 < u; < 0.615, Fig. 6: —=1.35< y, <1.35, —1.35 < y; < 1.35,

#; =07, p=0 00< ;€135 ur=0

A T e e G B T8 a7

Fig. 10: a =02, f=0.5 Fig. 11: a=0.2, f=05
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Computer Algebra Tools for Higher
Symmetry Analysis of Nonlinear
Evolution Equations

V.P.Gerdt
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Head Post Office P.O.Boz 79, Moscow, USSR

Abstract

This paper presents a computer-aided approach and a software package for sym-
bolic algebraic computation to solve the problem of verifying the existence of the
canonical Lie-Bicklund symmetries for multicomponent quasilinear evolution equa-
tions with polynomial-nonlinearity and computing of a given order symmetry if it
exists. In the presence of arbitrary numerical parameters the problem is reduced to
investigation and solving of nonlinear algebraic equations in those parameters. It
is remarkable that in all the known cases these algebraic equations are completely
solvable by the Grdbner basis technique implemented as a part of the software
package.

1 Introduction

The symmetry analysis of differential equations is one of the central problems in mod-
ern applied mathematics and mathematical physics. Among numerous methods of analy-
sis and integration of differential equations the most general and universal ones are based
on their symmetry properties. S.Lie has introduced the concept of the symmetry just
for the purpose of creating solutions of differential equations. From the theoretical point
of view the problems of symmetry analysis are investigated in sufficient detail. But in
practice to find the symmetry group (or even some individual generators) of a given dif-
ferential equation it is necessary to carry out extremely tedious algebraic manipulations.
That is why computer algebra has continued to play an increasingly important part in
the practical symmetry analysis [1].

Now there are several computer algebra packages for symmetry analysis of differential
equations. Among them the big packages SODE for ordinary differential equations and
SPDE for partial differential equations are the best developed [1]-[2] for determining
so-called classical or point or Lie symmetries. They use the most general method of
computation which based on generating and solving of the determining system in the form
of linear differential equations in functions which occur in the definition of a symmetry
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generator. Both Reduce and Scratchpad II versions of the packages SODE and SPDE
have been designed according to basic concepts of software engineering. Moreover, data
abstraction as one of the main attributes of the Scratchpad II system allowed one to gain
very effective module organization of the package with the detailed investigation of its
complexity [2]. The most difficult part of the whole computational process is simplification
and integration of the determining equations. At this step a user has often to do a
reasonable ansatz on the structure of symimetries. By this reason an interactive regime is
always assumed.

In the searching of so-called generalized or higher (Lie-Bdcklund) symmetries, when
functions which occur in the definition of a symmetry generator may depend not only on
the point, i.e., the dependent and the independent, variables but also on the derivatives of
the unknown functions, on an appropriate ansatz plays still further important role. The
point is that the existence of a higher symmetry imposes much more strong limitations
on the equations under consideration than the existence of the classical Lie symmetries.
By this reason a universal computer algebra package for the construction of higher-order
symmetries based on the most general scheme of computation (see, for example [3]) m
ay not be usable for many nonlinear problems. Therefore the special constructive and
effective methods for finding the generalized symmetries in some sufficiently wide class of
nonlinear differential equations are of interest for the design of the corresponding computer
algebra packages.

In this paper a computer-aided approach to construction of higher symmetries is pre-
sented which can be applied to wide class of multicomponent quasilinear partial dif-
ferential equations of the evolution type. After necessary mathematical definitions and
formulae (Sect.2), description of the computational procedure for higher symmetry anal-
ysis (Sect.3) and its implementation (Sect.4) in the form of package written in internal
language (Rlisp) of the Reduce computer algebra system are given. The package consists
of the two functionally independent modules. One of them is destined for the symmetry
analysis proper and another for solving systems of nonlinear algebraic equations which
arise in the presence of arbitrary numerical parameters. As an illustration, the compu-
tation of the third order Lie-Baclund symmetries for eight-parametric family of coupled
nonlinear Schrédinger equations is considered (Sect.5).

2 Mathematical Background

Among the partial differential equations of physical interest, an important role is
played by the class of polynomial-nonlinear evolution equations (NLEE) in one-spatial
and one-temporal dimension of the following form

u = ®(z,u,...,uny) = Auy + F(z,u,...,un_1;,..ak), N 22
u = u(t,z),ux = Fufdzt,u = (u,...,uM),F = (F,...,FM), (1)
A =diag(M,...,AM), Aia; €C, A #0,

where the vector function F is a polynomial in its arguments including numeric parameters
a; if they are. F is said to be a differential function of N — 1 order. The function ¢ has
the order N respectively.
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The class (1) contains such well-known integrable NLEE as the Korteweg-de Vries
equation, the Burgers equation, the nonlinear Schrédinger equation and many other ones
which are now under intensive investigation.

The concept of integrability is closely connected with the existence of the higher sym-
metries [4): NLEE is integrable if and only if it possesses infinitely many time-independent
higher symmetries. But in practice the existence of M different higher symmetries is suf-
ficient for integrability of M-component NLEE.

Definition. A vector function H = (H},..., H™) of a finite number of differential
variables r,u,u,,...,uy, Is a n-order (higher) symmetry of the system (1) if it leaves (1)
invariant under the transformation t' = ¢, ' = z, v’ = v + tH(z,u,u,,...,u,) within
order 7. This means that H corresponds to the canonical Lie-Backlund operator [5)

M .0
=S"Hi— 4...
X=Y Hgs+ (2)
and satisfies the differential equation
dH
o~ %,
which is equivalent to the operator relation
dH, dd,
- (H.,2.] = P (3)
Here ®. and H, are matrix differential operators
N ) n )
o, =3 0.0 [®),, =0%*/dul, H.= H.,D', [H)],, = OH"|du] (4)
1=0 1=0
and y
d a ;0
D*Ezb—z*_fg‘:gu"“éu—;’ (5)
d M <« .. B d M o ) 9
—_— = (Pt — = 4 ) P
dt ;;D(q’ duy’ dr ;gD(H)au;

are the total differentiation operators with respect to z,t and 7 respectively.

3 Construction of Higher Symmetries

To compute higher-order (n > N) symmetries for a given NLEE of the form (1) the
effective algorithms have been developed [6,7,8) which take into account the basic methods
being used by experts [9] in their pencil and paper work.

The basic idea is to construct step by step the coefficients A;, 1 =n,n-1,...,0 of
matrix differential operator

L=A0+A1D+"'+AHD" (6)
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as a solution of the operator equation

dL. _d®.  d®wn-y N,
P @)

which corresponds to relation (3) with constant diagonal matrix ®5 = A as defined in
(1).

Isolation of coefficients of D' in the operator equality (7) gives the following chain of
equations in A;

DN+ [A, An} =0,
DN+n-1. N-A-D(A,) + (A Anai] + [On-1, 4] = 0,
DN s N A D(Ancigr) + (A Anci] + [@n-1, Ancia] + B = 0, (8)
DN N-A-D(A))+ (A, Ao} + [®n-_1, A ] + B, = 0,

where B, is expressed in terms of 4;, j >n -1+ 1.

The structure of matrix A in (1) and the form of i-th equation of chain (8) make
possible finding the diagonal parts of A,_;;; and non-diagonal parts of A,_;. For example,
in the case of different eigenvalues A, from the first two equations of (8) it follows that A, is
arbitrary diagonal number matrix A, = diag(p, p#2,...,4m), pi € C. General recurrent
formulae for A; as solutions of (8) are given in [6,7,8]. Because of this, equations (8) allow
one to compute sequentially matrices A, A,_1,...,4; and non-diagonal part of Ap.

To provide the existence of a local higher symmetry H(z,u,u;,...,u4y,), chain (8) must
admit local, i.e. depending on a finite number of dynamic variables taken from an infinite
set T, u,uj,..., solutions A; as well. From Eqs.(8) it follows that to find the diagonal part
of A; it is necessary to solve an equation of the form

D(Q) =S, (9)

where operator D defined by expression (4). For a given local S, Eq.(9) admits a local
solution @ = D~!(S) only if S satisfies a number of restrictions [6]. The reverse operator
D~ is none other than integration operator with respect to z. Hence at each step of chain
(8) a number of arbitrary constants is generated. These constants may be important for
analysis of the next steps.

After construction of the n-tk order operator (6) by means of Egs.(8) one can compute
the n-th order symmetry using operator relation

H. — diag(Ho) = L = L — diag(Ao), (10)
which follows from Eqs.(3) and (7). Operating by both sides of (10) on u; = u, we obtain
D(H)= L(w)), Lj=D-08/0z—v’ 8/0w (11)

Eq.(11) defines the components H’ of symmetry H within arbitrary functions h’(w’)
H = D™V (Lu, ) + W (v). (12)
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Algorithms of D and D reversion are described in [6]. They allow to verify the condi-
tions of solvability of Eqs.(9) and (11)

S e Im(D), (Lw)y € Im(D;).

The notation p € ImD means that p = Do where o is some local function. It is just
solvability of (9) in terms of the corresponding local functions of chain (8) leads to the
existence of higher symmetries for Eq.(1).

Because a higher symmetry of some fixed order may not exist for a given NLEE of
form (1), the best computational strategy is the following one.

Step 1. Verification of the necessary conditions for the existence of higher symmetries.
Those necessary conditions follow from solvability of Eq.(7) in terms of series (6) and have
the form of the local conservation laws [6]-{7]

%R(i,j)eImD, i=0,1,... j=1,2,...,M. (13)

Densities R(z,7) in (13) are computed in terms of the r.h.s. of (1) [6]-[7]. For example.
R(0,7) = 0F? [Bujy_,.

In the presence of arbitrary parameters a; in (1) the necessary conditions (13) for a
higher-order symmetry are equivalent to some system of nonlinear algebraic equations in
those parameters. As an illustration, let us consider two-component case u = (v, w) and
the [ollowing local expression p = a * vy * w + b * v * wy + ¢ * v; * w,. The condition
p = Do is solvable in terms of local function ¢ if and only if ¢ = a + b. In that case
oc=a*xv*w +b*xv, *xw.

In what follows we have to verify whether the obtained algebraic system has a solution.
It is remarkable that the Grobner basis :+rlinique [10f, being the well-known tool of
computer algebra, gives the most elegant anu effective method for solving that problem.

Step 2. Previous step gives very important information on the existence of a higher
symmetry. Now it is possible to try to construct the explicit form of the latter for some
fixed order using the above algorithm. At this step we may obtain new restrictions on
the r.h.s. of (1) in the form of algebraic equations in its parameters.

Step 3. Solving of the resulting system of nonlinear algebraic equations obtained
at steps 1,2. Here the Grébner basis technique again provides a means to simplify the
problem drastically. Moreover, in many cases, in particular, in problems of classification
of integrable NLEE [12], it allows to find all (even infinitely many) solutions in an explicit
algebraic form.

4 Implementation in Reduce
We have implemented the above computational scheme for polynomial-nonlinear evo-
lution equations (1) in the Reduce computer algebra system [13]. Our package consists

of the two functionally different modules written in the language Rlisp of the Reduce
symbolic mode.
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The first module HSYM, which abbreviates Higher Symmetry, provides the procedures
for sequential verifying the necessary conditions (13) in the case when there are no arbi-
trary parameters in initial NLEE (1). If they are HSYM generates an equivalent system
of nonlinear algebraic equations. The solvability of the latter guarantees the existence of
the vigher-order conservation laws (13). Their densities R(z,j) are computed in explicit
form. HSYM has also the special procedure realizing the method of Sect.3 for finding the
explicit form of the higher symmetry of the order specified by a user.

The restriction imposed in HSYM that F' is a polynomial in its arguments, being
very important from the viewpoint of applications, has given the possibility to establish
the efficient algorithms for the realization of all necessary algebraic manipulations. They
are based on the built-in recursive representation for polynomials in “standard form”
and effectively use the corresponding built-in procedures acting at “standard forms” and
“standard quotients” of the Reduce internal data.

The second module ASYS, which abbreviates Algebraic System, provides verifying
the consistency of the systems of algebraic equations which arise at step 1 of Sect.3 as
necessary conditions for the existence of higher symmetries. For this purpose it is sufficient
to compute {10] a Grébner basis G for an ideal generated by a set of polynomials under
consideration. The system is unsolvable if 1 € G. ASYS contains the procedures for a
Grobner basis computation realizing well-known Buchberger’s algorithm [10].

Solving the systems of algebraic equations at step 3 of Sect.3 is accomplished in ASYS
as follows. A lexicographic Grobner basis is constructed. Then ASYS computes the di-
mension and independent sets of variables for the ideal according to the method described
in [11]. If our algebraic equations have infinitely many solutions the ideal has a positive
dimension and the variables of each independent set can be considered as free parameters.
In this case the obtained Grobner basis is recomputed for each set of parameters leaving
the order of the other variables unchanged. As a result a set of Grobner bases is obtained
with a simple structure and with “separated” variables (G is “triangularized”) [10]. In
this way the problem of solving a (often very complicated) system of nonlinear algebraic
equations is always reduced to solving an equation in one variable.

In the general case only this last stage of computation may not be done automatically
by our package. But our experience shows that the solutions can often be found with the
help of the Reduce polynomial factorization facilities [13]. In the case of integrable NLEE
their higher symmetry analysis leads to algebraic equations which can certainly be solved
in completely algebraic way by using ASYS [12].

5 Example

As an example of application of our package let us consider the following eighth-
parametric system of two coupled nonlinear Schrodinger equations.

{ (), = (), + 6l &y |2‘I’1 + 7| ¥, |2‘I’1 + 6, 9393,

. 14]
i(W2), = ag(Va),, + o] U2 Wy + 7| ¥ [PU; + 6,025 (14)

Here ¥, are complex functions and a;, B;, v, 6; (¢ = 1,2) are real parameters. This family
of nonlinear evolution equations includes, for example, the systems describing interaction
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of electromagnetic waves with different polarizations in nonlinear optics [14] and resonant
interaction of the long acoustic and short waves [15]. The complete integrability of (14)
at 7, = v, and 8, = §; have been studied by another method in [16].

In order to be integrable (14) must have the higher symmetries of the order n > 3 of
the form.
Hi(q‘jﬁ(q’j)z""»(\pj)z-_,_z-(n_g.‘mc,))v 1,] = 1121 n 2 3

which correspond to the canonical Lie-Backlund operators (2).

Introducing the notations u = ¥, v = ¥], p = ¥, ¢ = U3, 7 = it we can rewrite (14)
in the form (1)

Ur = ayUzz + Prudv + 11upg + Svp*
v, = —oq vz — Bruv? — mupg — S1ug?
Pr = QoPzz + 2P’q + Mauvp + bpu’q
gr = —Q2¢zr — B2pg” — T2uvg — 6v°p .

As a result of the first two necessary conditions, the module HSYM generates the three
set of algebraic equations in dependence on the relation between a; and a; and under
assumption that a;a; # 0 in accordance with (1):

1) a # *e
a1bm — am12/2 = ey — 2028272 = ey b — aamébe = 0
a1 726 — aa1by = Bimiby — 7%51/2 = By2 — ‘71"!%/4 =0
‘71252 = 2877261 = 117261 — 2527261 = M Y262 — 722‘51 =0 (15)
Brér — 162/2 = B2, — 126, /2 =0

2) oy =
N6 =268 = b2~ 1bi=Pm - =B -7 +26 =0
5%51 - 5? = Br126, — 251252 = 262 — 726, /2 = ‘7;51 - 4515§ =0
1282 — 48 =11 =B — 26 = 12 — Bav2 — 268, = 0 (16)
Brér — 1261/2 = P16y — 126,/2 =0

) oy = —a
B ~ Bave = iz + ‘Y% = pib = ‘712 +Mmb2 =12+ P12 =0
Né1 = 16y = Bdy = 126y = 126, =0 (17)

Module ASYS allows readily to obtain all the solutions of (15)-(17). But construction
of a symmetry according to algorithm of Sect.3 which are implemented in the module
HSYM, may lead to new restrictions on the initial evolution equations in addition to
those which follow from the necessary integrability conditions. In the case of polynomial-
nonlinear evolution equations with arbitrary parameters HSYM allows one to produce an
extra set of algebraic equations for a given order of a higher symmetry (see Sect.2,3). We
omit here those extra equations because of their awkwardness.
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Tables 1 gives all the solutions of (15)-(17) such that (6) possesses the Lie-Baclund

symmetries of the order n > 3. The corresponding third order symmetries are listed in
Table 2.

Free Solutions
variables
1) ay,az, B, B ‘71=0a72=0,51=0,52=0-
2) a1, B, B2 az = o, = P, 72 = £51,6, = 0,6, = 0.
3) a;, 61,6, az =y, B = 26,11 = £26,, 8, = 61,7, = £26,.

Table 1: Subset of solutions of (15)-(17) which provides the existence of Lie-Backlund
symmetries

Free Symmetries
variables

1) ap, a2, Hl - al(q’ )z:x+3ﬂ1 )r’ ‘I’l I2
Bi,Ba | Hy = (W) . +3Ba(¥2). | ¥y |

2) a1, 51,82 | Hi = en(¥1),,, £3/2 Ba(¥192), 5 + 36, (¥,),| ¥, |

Hy = +0y(¥2),.. +3/2 5i(¥, ‘I’z) v +3ﬂz(‘1’2) | ¥, I*
3) @1,61,6; | Hy = oy(¥y),,, £ 3(¥1),(6:] ¥, | +52| v, |° )+351(‘I’2),( YT £ ¥, 93)
H2 = 01(‘1’2)22_1 :t 3(‘1’2 ::(61| ‘I’z | + 62' ‘I’] I + 362( )1‘( 1 :t \IJQ‘I’;)

Table 2: Lie-Backlund symmetries of the third order for the solutions of Table 1

We conclude that all the systems of the form (1) possessing the canonical Lie-Backlund
symmetries of the above structure are exhausted by Table 1. This conclusion is consistent
with the results of Ref.[16]. The complete list of the third order symmetries is given in
Table 2. Computation of the symmetries 1) — 3) with our Reduce package requires about
20, 40 and 50 seconds on an IBM PC AT-386 (25 Mhz) respectively. Other canonical
Lie-Backlund symmetries of the order n > 4 can be found in a completely automatic way
as well.
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Abstract
We report on an experimental implementation of Grobner bases in Mathematica. This
experiment gives insight into the performance of Mathematica as a scientific system for
algorithm researchers. We draw two major conclusions:

o We are enthusiastic about Mathematica with respect to the programming style 1t
supports, which allows easy, well-structured, and generic implementation of algo-
rithmic ideas.

e We are frustrated because Mathematica is so extremely slow that its use for scientific
experiments of serious size is prohibitive.

1 The Experiment and Its Result

The experiment described in this paper is part of the book project (Buchberger 1991).
The book on which the author is working intends to provide an easy, but mathemati-
cally complete, introduction to the theory of Grobner bases and its many applications.
We also intend to distribute, along with the book, a GROBNER software package in
source code. The goal of GROBNER is threefold:

o students should be supported in learning the theory by having the possibility to
try out examples and to see all details of an implementation,
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o researchers should be able to experiment with new versions of the algorithms,

check hypotheses, expand and improve the package,

and users should be encouraged to apply the method for various concrete large-
scale problems.

A suitable language for GROBNER should therefore meet the following require-
ments:

I

the language should be available on as many machines as possible,
the language should be professionally distributed and supported,
the code should be easily readable,

some basic algebraic algorithms (long integer arithmetic and, in refined versions
of the package, rational function arithmetic and polynomial factorization) should
already be available in the language,

the language should support generic programming (formulation of algorithms in-
dependent of the underlying data domain),

the code should be fast.

compared systematically a number of available languages that might be considered

as an immediate choice: C, C**, LISP, PCL (Portable Common Loops), muSimp, SAC-
2. Scratchpad-2, Maple and Mathematica. After extensive experiments with coding all
or part of GROBNER in these languages, I found that the appropriateness of these
languages for the task at hand can be summarized in the following table:

C | C** | Lisp | PCL | muSIMP | SAC-2 | Scratch- | Maple | Mathe-
pad-2 matica
availability || + [ + + F - + - + +
professional || + | + + F + - + + +
distribution
readability || £ | £ + + + + + + +
algebraic - |- - - + + + + +
algorithms
genericity - |+ - + - - + - +
speed + [+ [+ ¥ [+ + F ! -
(Maple will soon have generic programming facilities.)
The coarse scale used in this table is: +,+,F,~. The last line concerning speed

can be given in more detail:




I [CTC** [Lisp [ PCL | muSIMP [ SAC-2C [ Spad-2 [ Maple | Mathematica

[speed [ L [ 1/2 ] 1/10]1/100] 1/10 1 1/100 [ 1/1000 | 1/3000

This line should be understood in the way that, for example, a program written in
Mathematica as a language (not a call to an eventually available built-in function) is
approximately 3000 (three-thousand!) times as slow as the same program written in
C. One main part of this paper (Section 3) will be devoted to backing this assertion.

When I started my experiments with the above candidate languages for GROBNER,
I already knew most of the entries in the above rough table of performance criteria
because most of this is well know and documented. The two entries that surprised me
most (and it took me quite some time to “fill these entries in” because very little is
said about this in the official documents and critical assessments) were

o the strength of Mathematica for generic programming and
e its prohibitively slow speed.

Therefore, I would like to devote this paper to a discussion of these two aspects.

The conclusicns we draw are, of course, independent of the particular package
considered. Only for the examples we will need some basic knowledge about Grobner
bases, see the survey articie (Buchberger 1985). It is clear that the present paper
cannot give an introduction to Mathematica either. For all details about Mathematica
see the document (Wolfram 1988).

2 Programming Style and Generic Programming

The programming style of Mathematica is elegant mainly because of two reasons:

e Mathematica’s fundamental data type is the “expression”, which models both
nested data and nested function descriptions and encompasses the expression
encounterd in ordinary mathematics in a very natural way.

e In function definitions, Mathematica allows arguments that are “patterns” (i.e.
terms) and not only variables. Thus, one often can formulate algorithms in Math-
ematica without explicit “selectors” and “constructors”, which tend to make pro-
grams clumsy in other languages. Again, this pattern matching programming
style is what normally is used in ordinary mathematics (or in its formalization in
predicate logic) for describing algorithms.

For example, any selection of the ordinary mathematical rules for “lim™ would
immediately yield an executable Mathematica program:
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Limes[a_+ b_] := Limes{a] + Limes[b]
Limes[a_ b_] := Limes[a] Limesl[b]

Every Mathematica expression that matches the “pattern” Limes[ a_+ b_J], where
a_ and b_ stand for arbitrary expressions, would be transformed by the Mathematica
interpreter according to the first rule. In fact, Limes[ a_+ b_] is an abbreviation for
Limes[ Plus[ a_, b_]]. Even, an entire rule like Limes[a_+ b_] := Limes[a] +
Limes([b] is in fact a single expression, which in “full form” would be

Define[ Limes[ Plus[ Blank[ a)], Blank([b]]],
Plus[ Limes{ a], Limes[ bl]]

Generally speaking, except for some atoms, the only data items in Mathematica
are expressions of the form fle,,...,e,], where f,e,,...,e, are again expressions.

This simple concept of “expression and matching” is very powerful. We will now
show that it incorporates, in a very natural way, the concept of “generic programming”,
which is vital for complex algebraic packages. We find it worthwhile to expand on this
point because, although briefly mentioned in the document (Wolfram 1988), it is not
so commonly known.

The main point how generic programming can be incorporated in Mathematica
programs is the fact that the f in a Mathematica expression f[e,,...,e,] can be used
as a “tag” for characterizing a data domain. Objects having two different (constant)
tags T1 and T2 will automatically be analyzed to belong to two different domains
and, accordingly, two different sets of rules may be installed for the same operation
Operation:

Operation{ T1{ ...}] := first right-hand side,
Operation[ T2[ ...]}] :=second right-hand side.

When finding an expression of the form Operation[ ezpr], the Mathematica inter-
preter analyzes the expression ezpr and depending on whether ezpr starts with T1 or
T2 applies the first rule or the second. This simple mechanism can be used to cre-
ate “generic packages” that handle complicated “towers” of algebraic domains without
repetition of code.

For example, when implementing Grobner bases (over multivariate polynomials)
one would like to formulate the algorithms for a wide range of different domains of
coefficients and for many different orderings and various representations of power prod-
ucts. Therefore it is not possible to use the built-in multivariate polynomial package
of Mathematica (which is actually coded in C and is not available in source code for
users!) )

One way of organizing the many possible “towers” of domains for GROBNER is as
follows: The top-most domain is the domain of distributive polynomials which I chose
to represent in the following “nested” form:
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DNP[ m, dnp],

where m is a monomial and

dnp is again a distributive polynomial.
(DNP[ ] is the “empty” (zero) polynomial.)

The monomials might be represented in the following form
Mon[ ¢, ppl,

where ¢ is an element of a coefficient domain and
pp is an element of a power product domain.

We are interested in many different coefficient domains: the built-in rational num-
bers, the finite fields GF(p), the field of rational functions etc. For example, finite field
elements in GF(p) might be represented by

FF[ f1,

where f is a number modulo a prime p, and rational functions may be represented by

RF[ 7f],

where rf might be a rational function in the built-in Mathematica representation.
Finally, the power products may be represented as “exponent lists” in the form

EL[ 61,...,6,.],
where the e),...,e, are the exponents at the n indeterminates. Alternatively, one
may be interested in a “Godel coding” of the exponents e;,...,e, by the natural
number py' - - pi*, where the p;,...,p,,... are the prime numbers. A corresponding
representation in Mathematica may be

GE[ ge],

where ge is a natural number.

Now we show some parts of the corresponding Mathematica code for realizing arith-
metic on these domains:

Addition for DNP-polynomials:

dnp_DNP + DNP[] := dnp

DNP[ mi_, dnp1_] + DNP[ m2_, dnp2_] :=
DNP[ m1, dnpi + DNP[ m2, dnp2]] /; ml > m2

DNP[ mi_, dnpi_] + DNP[ m2_, dnp2_] :=
DNP[ m1 + m2, dnpl + dnp2] /; IsEquivalent[ ml, m2] &% m1 !'= -m2
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(A rule containing a variable like dnp_DNP on the left-hand side must be read as follows:
If an argument dnp whose tag is DNP is encountered then the rule is applied). Note
that the “+” on the left-hand side of these rule denotes the addition specific for DNP-
polynomials whereas the “+” on the right-hand side is “generic” in the sense that.
at run-time, the objects m1, m2, dnpl, dnp2 etc. are analyzed and, in dependence
on their “tag” (in this case “Mon” or “DNP”), the appropriate rule of the package is
selected and applied. Similarly, in this example, also “>”, “~”, and “IsEquivalent”
are “generic”.
Some operations on Mon-monomials:

Mon[ c1_, pp1_] > Mon[ c2_, pp2_] := ppt > pp2
Mon[ ci_, pp_] + Mon[ c2_, pp_] := Mon[ c1 + c2, pp]
IsEquivalent[ Mon[ c1_, ppi_], Mon[ c2_, pp_]] := ppl == pp2

The operations “>”, “+”, and “IsEquvialent” appearing on the left-hand side of these
definitions are the specific realizations for Mon-polynomials of the generic operations
used in the above domain of DNP-polynomials. The operations “>" and “+” on the

right-hand side are again “generic”.
Let us consider one more “layer” in this example of a “tower of algebraic domains”.

“>” on EL-power product:

ell_EL > el2_EL :=
Block[ i, ,
For{ i = 1,

120 el1([ 11 > el2([ i1,

“>7” on GE-power products:
GE[ e1_> GE[ e2_] := el > e2

In these two definitions, again, “>" on the left-hand side denotes the operation specific
for the domain of EL-power products and GE-power products, respectively. “>" on the
right-hand side denotes the corresponding generic operation. Typically, the domain of
natural numbers will be used as the substitute for these generic domains. However, it
is well conceivable that other domains are used as exponent domains. For example, it
may turn out that “symbolic exponents” (i.e. polynomial or rational expressions) are
an interesting exponent domain.
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Addition on rational number coefficients: Arithmetic on these numbers is built-in.
In fact, these numbers have the internal tag Rational.
Addition on finite field elements:

FF[ f1_] 4 FF[f2_] := FF[ Modul[ f1 + £2, $Prime]]
Addition on built-in rational functions:
RF{ rf1_] + RF[ rf2_] := :F[ Factor[ rf1 + rf2]]

In the last two examples, again, “ +” on the left-hand side is specific for the domains
“FF” and “RF”, respectively, whereas “+” on the right-hand side is generic. Typically,
in these cases, the generic rule will only be applied to the domain of integers and the
domain of built-in rational function expressions, respectively.

On top of the DNP-polynomials, a number of higher levels in the generic domain hi-
erarchy are constructed in GROBNER, for example, the domain of sets of polynomials.
pairs of polynomials, sets of pairs of polynomials etc.

A package that is constructed according to the above principle can then be used
for a huge variety of domain combinations. At run-time, the Mathematica pattern
matcher will analyze the tags of the data expressions and select the appropriate rules
in the rule base (= “program”). Roughly, if in a package with m “layers” of domains
there are n domains in each layer then the package can be used for n™ many concrete
domains although there are only m - n many pieces of code!

Summarizing, I think that generic programming in Mathematica along the above
lines for towers of algebraic domains is elegant, natural, versatile, and vields intelligible.
easy-to-change and short code. I reaily enjoyed programming in this style.

In addition, the slow-down caused by tagging objects is tolerable. By appropriate
distribution of the code (how this can be controlled by the programmer is described
in the Mathematica document), as a rule of thumb the slow-down is approximately by
the factor of 2 if one has 10 rules in each domain. )

Having adopted the above generic style for a preliminary version of GROBNER 1
was nearly convinced to stay with Mathematica for carrying the project through. 1
drastically changed my mind when | started systematic measurements of computing
time: It turned out that, whereas the relative slow-down by generic programming is
tolerable, the absolute computing times are prohibitive. I report on this in the next
section.

3 Speed
Speed is important both for the user of a system like GROBNER and for the researcher.

Algebraic methods like Grobner bases, which are “universal” for a broad class of
problems, tend to be “exponential” in their behavior. High speed is therefore essential
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for using the method in practical cases. For example, good results have been achieved
recently in robot kinematics by using the Grobner bases method on the PSI machine at
ICOT (Tokyo), see (Sato, Aiba 1991). The computing times are in the range of several
seconds, which is quite tolerable for this kind of problems. A slow-down by a factor
of 1000 or even “only” 100 by using the wrong language would make the application
worthless.

However, also the researcher working in such an area heavily depends on speed
because he needs to study huge series of test examples for observing the dependence
of computing time on input parameters, for studying certain phenomena in the inter-
mediate results that may lead to new conjectures and eventually to new theorems, and
also for using the method as a building block for other algorithmic problems. For ex-
ample, recently the Grobner bases method is heavily studied as a building block in the
context of Zeilberger’s approach to the automated generation and proof of combinato-
rial identities and and the computation of definite sums and integrals, see (Takayama
1990).

For avoiding misunderstandings, let me point out that Mathematica (and similar
systems like MAPLE) may be very fast if one uses the duilt-in C functions. Externally,
these functions can be called by Mathematica function calls. Internally, however, they
are not written in the Mathematica language but in C. Their code is not accessible
and even if it would be accessible it would be of little use for the tutorial and research
purposes described in this paper.

Even this favorable statement about the speed of built-in functions in Mathematica
must be relativized because some of the functions, in particular the built-in Grobner
bases function, perform fast on small examples but show an unexplained increase in
computing time on slightly bigger examples. This is absolutely intolerable for using the
system as a research tool. Not only does the unexplained increase in computing time
lead to the conclusion that the implementation does not use all theory available for the
method but it leaves the researcher with absolutely no possibility to analyze the reason
for the unexplained behavior. Also, it is not possible to adjust the built-in functions to
changing needs, for example in the case of GROBNER, to variable coefficient domains
and variable admissible orderings of power products.

In a situation like ours where we want to distribute software in source code for stu-
dents, researchers and users in fully documented form, the speed of Mathematica must
be judged by its performance for algorithms that are fully formulated in Mathematica
with any resort to undocumented algorithms written in C. Since my initial experiments
with the speed of parts of GROBNER written in Mathematica were so disappointing
I went through a detailed time analysis of the fundamental Mathematica operations.
Summarizing what I found is:
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Class of Operations Time per operation
in millisec
(on an Apollo 3500)

constant time operations on 1.5

Mathematica “lists” (i.e. arrays internally):

e.g. Length, First, Last, Part

constant time operations on “nested lists”™: 3

e.g. FirstN, RestN, PrependN

Iteration over Mathematica “lists”: 1+0.041

e.g. Rest, Drop, Prepend, Append, Insert, Reverse

Map and Scan iteration over “lists” 1.51

user programmed iteration over “lists” 31

using “For” etc.

user programmed iteration over “nested lists” 61

LengthN, ReverseN, MapN, ScanN etc. |

The parameter “I” in the above table denotes the length of lists. In order to un-
derstand the length-dependent complexity of some of the above operations one must
know that Mathematica “lists” internally are represented by arrays. (This is nowhere
documented in the Mathematica publications. However, for algorithm researchers this
is very important information.)

The “nested lists” mentioned in the above table are expressions of the following
kind:

T[ e1, T[ e2, T[ e3, ... T[] ...113,

where T is some “tag” and the ei are the actual elements of the list. This may be used
as one possible simulation of true “lists” in Mathematica. The user-defined operations
on such nested lists have the suffix “N” in the above table.

From the above table one sees that the Mathematica operations are approximately
3000 - 8000 times slower than the corresponding operations programmed in C. (The
Apollo 3500 is a 5 MIPS machine). (My experimental results are also backed implicitly
by the examples in (Maeder 1990), which partly contain timings. However, no explicit
mention about speed is made in the official Mathematica documents!)

As a consequence, high-level algorithms fully written in the Mathematica language
and not resorting to built-in medium grain algorithms like polynomial arithmetic are
prohibitively slow. Here are the computation times of two typical Grobner bases ex-
amples:
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3 variables 3 variables
3 polynomials | 3 polynomials
degree 2 degree 4

My implementation 2 min 12 min

on a ZUSE 723 (1965')
in assembler code
Built-in Mathematica 1 sec > 2 days
Grobner basis function
on Apollo 3500

Built-in Maple 4 sec 2 min
Grobner basis function

on Apollo

My implementation 5 min 30 min

fully coded in
Mathematica language

From this table one sees that the speed-up of approximately 1000 achieved by hard-
ware improvements in the last 25 years (the ZUSE Z23 was a 0,003 “MIPS” machine!)
is completely lost by the software elegance of Mathematica and similar high-level lan-
guages.

Also, one sees that the undocumented built-in Grobner bases function of Mathe-
matica performs very well on small examples but shows an unexplained increase in
performance for slightly larger examples. (This phenomenon was observed by many
researchers with some other of the built-in Mathematica functions).

The reasons for this bad speed performance of Mathematica as a language most
probably are manifold:

e Mathematica is interpreted, not compiled,

¢ a function call in Mathematica, since it performs something so general as pattern
matching, needs approximately 1 millisecond independent of the function body,

e in integer arithmetic the most general case is assumed even if only index compu-
tations are executed,

e others?

I think that these reasons should be analyzed in more detail and documented in
future Mathematica documents.
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4 Conclusions

In this paper I concentrated on only two criteria for judging Mathematica. Many
other criteria could be considered, see the extensive critical analysis (Fateman 1990).
Interestingly enough, in (Fateman 1990) the two criteria, on which I concentrate in
this paper and which are the crucial ones for judging a system as an instrument for
algorithm research, are not treated in any detail.

From what I lcarned in the above experiments I drew the following conclusions:

s Although there are many interesting software systems available for computer al-
gebra, the “ideal” system does not yet exist. The ideal system would combine the
elegance and naturalness of Mathematic and the speed of C. I know this is impos-
sible but I think we could achieve something much better than what exists now.
For example, it would already help a lot if there was a possibility to incorporate
user-defined C routines in high-level languages like Mathematica.

e For my own GROBNER project | now decided to use Collins’ SAC-2 system
in a new version that is entirely coded in C. I designed a simple preprocessing
mechanism that allows a rudimentary form of generic programming that seems
to be sufficient for a project like GROBNER. 1 will report on this in a subsequent
paper. G. Collins and I decided to cooperate on turning “SAC-2C” into a profes-
sionally distributed system such that many researchers can use it in situations like
GROBNER where algorithm researchers want to distribute easy-to-read. generic
and fast source code.

Acknowledgment: This paper was written in the frame of the “Grobner Bases
Project” sponsored by the Austrian Ministry of Science and Research. I would also like
to thank Roman E. Maeder for pointing out the possibility of generic programming in
Mathematica to me. Thanks also to Stephen Wolfram who provided a test installation
of Mathematica for the “Grobner Bases Project”.
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Introduction

Computer algebra, in contrast with numerical analysis, aims at returning exact solutions
to given problems. One consequence is that the shape of the solutions may, at first, look
somewhat surprising.

In the first two sections, we present two examples of problem solving using computer
algebra, with emphasis on the shape of the solutions. The first example is the resolution
of linear differential equations with polynomial coefficients, and the second one is the
resolution of polynomial equations in one variable. In the first example the solution may
look useless since it makes use of divergent series, and in the second example the solution
may look rather awkward. But in both examples we sho that these solutions are in the
right shape for a lot of applications, including numerical ones. In the third section we show
that some features of the computer algebra system Scratchpad, especially strong typing
and genericity, are useful for the implementation of a method for our second problem,
i.e. for the implementation of the “dynamic” algebraic closure of a field.

* Also supported by Greco de calcu} formel and PRC mathématiques-informatique
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1 Linear Differential Equations

This section describes part of the work made by J. Della Dora, J.-P. Ramis and their
groups at the universities of Grenoble and Strasbourg. Using the computer algebra system
Reduce, they wrote a package called DESIR for the resolution of linear ordinary differential
equations with polynomial coefficients, like Airy equation

y-z=0 (1)
or more generally L(y) = 0 where L is some linear differential operator
L=an(z)8" + ...+ a1(2)0 + ao(z)

so that L(y) = an(z)y"™ +...+a1(2)y' +ao(z)y. In DESIR, the resolution of the equation
L(y) = 0 has three different meanings :

1. A symbolic solver returns N independent formal solutions of L(y) = 0 at z = 0.

2. Using the formal solutions, a numeric solver returns N independent convergent so-
lutions of L{y) =0 at z = 0.

3. These solutions in turn are used by a graphic solver to get N graphic solutions.
t.e. mappings from the set C of complex numbers into itself.

IN: L =an(X)ON + ...+ a1(X)d + ao(X)

SYMBOLIC

OuT : formal solutions
NUMERIC

Ovu'r : ronvergent solutions
GRAPHIC

OuT : graphic solutions

A description of DESIR is made in the theses {Tournier,Richard}, and we refer to them
for a detailed description of the algorithms involved, for proofs, and for more examples.
We only give here the example of the differential operator

A=2%%+279-1 (2)

of order N = 2. The differential equation A(y) = 0 corresponds to Airy equation at
infinity, i.e. it is got from Airy equation (1) by changing z into 1/z.
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1. The symbolic solver returns two independent solutions
1 3
T4 exp <3~2;-) 10 cixd
L
1 — 2
T4 exp (j—) SIS diz
X

where d; = (—l)ic.- and

5 385

=1 = — = — ..,
=1 a=790" 2% 1608

and more generally a recurrence relation is given that allows the exact computation
of ¢; for every 1.

2. The series .
oo
; 5 385

a(t) =) dit' = -1+ —t— ——t2 + ...

ute) ; "B T aes T
is divergent for every t # 0, but it is the asymptotic expansion {in the sens of
“Gevrey of order 2", as explained in [Richard]) of some holomorphic function u(t)
for arg(t) € —3—;'-,+3T"U. This function u(t) may be computed by “resummation”
techniques, using Borel transform [Richard]. Now let

U{z) = i exp (—:?3—) u(:r%)
3z2
then U(z) is 2 numerical solution of equation A(y) = 0 for arg(z) € —7,+x[. It
may be proved that ﬁ;(/(%) is the usual Airy function

l ex‘p(-‘-ax)oo 13.
Ai(z) = —/ exp| -zt + 3 dt

27 Jexp|=4%)oo

solution of Airy equation (1). Similar resummation techniques give two independent
numerical solutions in different parts of the complex planes.

3. Finally, using these numerical solutions it becomes possible to represent graphically
any solution of equation A(y) = 0, as a mapping from the set of complex numbers
C toitself. The planar representation chosen in DESIR makes use of time and color
to replace the missing dimensions. More precisely, a graphic representation of a
numerical solution f (e.g. f(z) = Ai(1/z)) is made of a succession of images that
represent, for increasing values of p, the image of the circle 3z3 = 1/p by f. Each
point z on the circle is colored according to its argument, and its image f(z) is
colored the same way.

So, the DESIR package proves that it is possible to use the information given by a
divergent series to get practical information about the solutions of a differential equation.
Actually, the formal solutions are computed at singular points of the differential equation,
and these points concentrate a lot of information about the equation.
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The singular points of a differential equation L{y) = 0 are in finite number : The point
at infinity may be singular, and also the roots of the polynomial an(z) (in the case of
operator A above, ay(z) = z°, which has z = 0 as unique root). Here appears the need
of computing exactly with complex numbers that are defined as the roots of a polynomial
with rational coefficients. For example if an(z) = z2 ~ 2 the singular points of L are V2
and —v/2. Every numerical value for V2, as precise as it may be, corresponds to a non-
singular point, where we cannot get so much information about the differential equation.
We have to compute precisely with the real numbers v/2 and —+/2, not with some floating
point approximation.

As an example, let us now consider the differential operator

B = a3(z)0% + a,(2)0 + ao(z) (3)

where
ay(z) = 28422+ 228+ 22+ 22+ 1= (23 4+ +1)?
a(z) = z¥+23+22+22+1
ao(.’t) = I

The finite singular points of (3) are the roots of the polynomial az(z), i.e. the 3 roots of
3+ 2 + 1. Let a denote any root of z° 4+ z + 1 in C. The symbolic part of DESIR then
returns 2 independent formal solutions of equation B(y) =0 at a :

8

ya,ﬂz(z_a) X

1 N
(1 + 341 ((800:2 - 2Ta + 136)8 + (-97a* + 37~ - 199)) (z-a)+ )
where 3 is any one of the 2 roots of the polynomial (in 2, with coefficients depending on
a)

(-3a’-9a+ 1)z* +(6a’ +Ta - 3)z+ a .

2 Algebraic Numbers

Complex numbers that are roots of a polynomial with rational coefficients are called
algebraic numbers. For example the complex numbers denoted by a in the last section are
algebraic numbers. It may be proved that complex numbers that are roots of a polynomial
with algebraic coefficients are algebraic numbers too, for example the complex numbers
denoted by  in the last section.

So that to solve a polynomial equation in one variable over the set Q of rational

numbers, say
P(z)=0 (4)

is to determine the set of algebraic numbers
{a € C| P(a)=0}.

And actually we are going to show that, very often, the best way to determine the solutions
of equation (4) is to say that they are the complex numbers a such that P(a) = 0.
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2.1 The irreducible case
Let us first prove that it is certainly the best way when :

1. P(z) is irreducible over the rational numbers, i.e. it cannot be written as P(z) =
Py(z)P,y(z) with both P;(z) and P,(z) non-constant polynomials with rational co-
efficients,

2. and the only operations we want to perform on the solutions are the four operations
+, —, X and /, and equality tests. In particular we do not ask whether they are real
or not, and even in case they are real we do not use any comparison test {like <).
Let us call this the unordered case.

It is the case of the singular points of the differential operator (3) above. The first as-
sumption is satisfied by P(z) = 22 — 2 and P(z) = 22+ 1, but not by P(z) = z? -1 =
(z —1)(z + 1). The proof of our assertion is the following :

¢ Computations with one root a of P(z) come to elementary computations on poly-
nomials with rational coefficients modulo P(z) (more precisely, the field Q(a) is
isomorphic to the quotient Q[z]/(P(z)))

e Arnd these computations do not depend on the choice of a (this comes from the fact
that Q[z]/(P(z)) does not depend on a).

In the case of P(z) = z2 — 2, this means that if you compute first with a = v/2 and
then with @ = —v/2, you will repeat exactly the same computations, so that you would
better compute with one symbol a, using the fact that a® = 2. For example

(14 4a +4a0%) — (1 + 2a + a?)
= 6+ 2a

(1+2a)P - (1+a)

which means that
(1+2v2)?-(1+Vv2)?=6+2V2 AND (1-2v2) - (1-V2P=6-2V2.

In the case of P(z) = z? + 1, it corresponds to the fact that we cannot distinguish
between both roots of P(z) (although we know that once one is called i, the other one is
equal to —1).

2.2 The reducible case

Let us now forget the first assumption above, i.e. P(z) may be reducible over the rationals,
but we still are in the unordered case. For example if a denotes any root of P(z) = z2 -1
(i.e. a =1ora=~-1) then

(1+20)-(1+a)®> = (1+4a+4a®)-(1+2a+a?)
= 3+ 2a

for both values of a, which means that

(14+2?2-(1+41)2=5 AND (1-2) -(1-1)2=1.
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This proves that at least some computations may be performed exactly as before, without
any need to distinguish between the different roots of P(z), and indeed it is the case for
computations that do not involve any equality test. But it is false for some computations
involving equality tests, for example (with P(z) = 22 - 1)

Jif a®+a=2Jthen alelse a+1

since here the answer to the test a2 + a = 2 is trueJ if a = 1 and false if a = —1.

The “mathematical” method here factorizes P(z) over the rationals and considers each
irreducible factor in its turn. When P(z) = 22 — 1 it means that we consider first a = 1
and then a = —1. When P(z) = z3 ~ 1 (that factorizes as P(z) = (z — 1)(z% + z + 1))
it means that we consider first a = 1 and then any number a such that a2+ a + 1 = 0.
This method is algorithmic, since there are algorithms for factorizing polynomials over the
rationals [Loos,Lenstra/Lenstra/Lovacz].

With this method, the points with vertical tangent on the elliptic curve Y2 = X3 - X
are described as the points (-1,0), (0,0) and (1,0).

Another example is the parametrization of the four branches through the point (0,0)
of the curve F(z,y) = 0, where :

F(X,Y)=
YIG _ 4Y12.X'6 _ 4ylle + YlelO + 6Y8X12 + 8Y7Xl4 + 14y6xl6
+4Y5.X18 + Yix? _ 4y4xl8 _ 4y3X20 + Y2X22 + X%

Parametrizations are given by :

(z(t) = =648t | y(t) = —64t% — 647 +...)
(z(t) = ~646,t* | y(t) = —641* + 6417 +...)

where 3, is any root of 16X? — 4X + 1 and B, any root of 16X2 + 4X + 1, i.e. B; =
(1+2iv/3)/8 and B, = (-1 + 2iv/3)/8.

In contrast, the “dynamic” (or “lazy”) method considers a as a “parameter”, submitted
to the “constraint” P(a) = 0, computes as much as possible with this information, and
splits the problem in several parts when it becomes necessary [Dicrescenzo/Duval 1]. Here
no factorization algorithm is required, but only gcd computations, which are simpler to
implement, faster to run, and valid over every base field (here we only care about the base
field Q, but in practice a lot of other fields are important for applications). However the
implementation is not easy, because of the splittings :

e At every moment there is a “canonical” representation of the algebraic numbers, but
it evolves during computations.

e When one case splits into several ones at run-time, from the splitting point the
subcases must be treated “in parallel”.

On the other hand, the “dynamic” method generalizes to various situations where “pa-
rameters” are useful.

Now the points with vertical tangent on the elliptic curve Y? = X3 — X are described
as the points (a,0) where a is any complex number such that a® — a = 0.
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The parametrizations of the four branches of the curve F(z,y) = 0 at (0,0) are now

described as :
(z(t) = —64p8t* , y(t) = —64t* — 64at” +...)

where a is any number such that o® — 1 = 0 and, for each choice of a, 3 is any number
such that 168? — 4a8 +1 = 0.

3 Scratchpad Implementation

The second method described above has been implemented by C. Dicrescenzo and the
author first in Reduce [Dicrescenzo/Duval 1], and then in a much more general setting in
Scratchpad [Jenks,Dicrescenzo/Duval 2).

Actually in the Reduce package everything was written in the underlying Lisp, since we
wanted to master the representation of the algebraic numbers by univariate polynomials.
This package was only able to handle algebraic numbers over the base field Q (i.e. algebraic
numbers in their “strict” meaning, as defined above).

in Scratchpad it was easy to build a polynomial domain adapted to our representation
needs. In addition any “computable” field may be used as a base field. More precisely, we
have defined in Scratchpad the dynamic algebraic closure of any field. Remember that, by
definition, “the” algebraic closure of a field K is a field K such that :

1. K contains K,
2. every non-constant polynomial with coefficients in K has a root in K,
3. and K is a small as possible for these properties.

For example, the field of complex numbers is the algebraic closure of the field of real
numbers, but it is not the algebraic closure of the field of rational numbers because it does
not satisfy axiom (3) above. In the Scratchpad version, axiom (2) is replaced by the more
“effective” axiom :

2'. K is endowed with an application which associates to every non-constant polynomial
P(z) with coefficients in K an element « of K such that P{a) = 0.

So that our Scratchpad program defines a domain constructor called DynamicAlgebraic-
Closure with one argument K that must be in the Field category of Scratchpad, which
means that K is a “computable” field (in some reasonable sense). The domain Dynamic-
AlgebraicClosure(K ) is also in the Field category, and in addition there is a function rootOf
with two arguments : a univariate polynomial P with coefficients in DynamicAlgebraicClo-
sure(K ), and an expression a. The value of rootOf(P,a) is an element a of DynamicAlge-
braicClosure(K ) such that P(a) = 0. The expression a is the “name” used in outputs
by Scratchpad for the number a. Finally it must be known that if f : Dy — D; is any
Scratchpad function that makes use of DynamicAlgebraicClosure(K ), and if we want to
apply f to some element z of D, instead of calling f(z) as usual we must call allCases(f,z)
in order to be sure to get every possible case. The function allCases manages the tree
generated by the successive splittings during the computation, it may be viewed as an
ingenuous infering engine.
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Here is an example of a simple application of our package. We define a function
test, with argument an integer and value a boolean, that uses DynamicAlgebraicClo-
sure(RationalNumber), where RationalNumber is the domain of rational numbers in
Scratchpad. We then ask for the value of test at 0 in every possible case :

CL:= DynamicAlgebraicClosure(RationalNumber)
POLY:= UnivariatePolynomial(x,CL)
test(n:Integer) :Boolean ==

p:POLY:= x#(x-1)%(x+1)*x2

a:CL:= root0f(p,"a")

q:POLY:= (x-2)*(x-a)

b:CL:= root0f(q,"b")

b = a+l
allCases(test,0)

There is Scratchpad answer :
[value is false in case a = —1 and 4* — b -2 =0,
value is true in case a = 1 and b = 2,
value is false in case a = 1 and b = 1,
value is false in case a = 0 and b% — 2b = (]
It is important to note that here we make use of :

1. Scratchpad facilities for the definition of recursive domains, since the elements of
DynamicAlgebraicClosure(K') are represented by polynomials with coefficients in
DynamicAlgebraicClosure(K ).

2. Scratchpad genericity properties, since the argument of DynamicAlgebraicClosure is
any domain I in the Field category of Scratchpad (which means any “computable”
field, in a reasonable sense),

3. Scratchpad strong-typing properties, since DynamicAlgebraicClosure( k') is also in
the Field category, while it is represented by various rings that usually are not fields.

Actually it seems that people agree to say that the genericity properties of Sratchpad are
very useful, but that the opinions are more divided about strong-typing, which makes
sometimes the use of Scratchpad rather heavy. With our package we prove that strong-
typing may be of great interest. Actually the domain DynamicAlgebraicClosure(k’)
may be used everywhere Scratchpad asks for a field, so that every code that has been
written in Scratchpad for polynomials, matrices, and so on, may be used with alge-
braic coefficients. In [Duval/Rybowicz] we give an example of the use of Dynamic-
AlgebraicClosure(DynamicAlgebraicClosure(K )) in order to study the singular points of
curves defined by polynomials with algebraic coefficients.
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Conclusion

Symbolic, numeric and graphic tools begin working together for solving problems in the
scientific computation area. It is still far from clear to determine the best way to integrate
them in order to solve a given problem. One point is that the shape of the solutions may
be fairly different, as we have seen on some examples above. We have tried to show on
examples that the solutions returned by computer algebra, how “strange” they may look
to numericians, may indeed prove very useful, thanks to their exactness and their ability
to deal with parameters.
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Environments for Large-Scale Scientific Computation

Stuart I. Feldman
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Morristown, New Jersey, USA

1. Introduction

This paper addresses support for writing large scientific software, measured either in the size of
the program or in the resource demands of the execution. Traditionally, scientific programs have
been of moderate size by industrial software standards, but extremely demanding of execution
resources (processor cycles, primary memory, secondary memory, input/output bandwidth).
Large codes are now big enough to demand the same support as other complex software, while
the operating regime requires very special care. This paper will discuss the needs of large-scale
scientific software development, and note what seems special about this type of program.

Much mathematical and scientific software has been written on the research model: rapid
exploration of altematives and algorithms by a small group of people (frequently one person)
with no plans for traceability, evolution, support, or generality. Frequently, the *‘requirements’”
are just a set of equations and boundary conditions. Only after the mathematical core of the prob-
lem has been solved are the complexities of human interface, portability, reliability addressed. It
is only after a program is a success that the deficiencies matter. Many routines and even entire
systems have been rewritten in order to achieve portability or to increase the comprehensibility of
the final code.

Large commercial software systems, on the other hand, are usually characterized by well-defined
phases, including requirements and specifications, design, implementation, test, integration, and
release*. Writing software that will have a long life and perhaps involve a large team of develop-
ers, designers, and testers demands care and deserves mechanized support.

2. Large Scale Software Development

The easiest measure of size is the number of lines of code. Though one can Streich these
numbers, and more subtle metrics are available, but with careful definition (and a formatter to
make the coding style uniform) it can be a useful measure. Really large systems in the telecom-
munications, defense, and commercial worlds are likely to be measured in the millions of lines.
The biggest suites of programs exceed ten million lines of code. This should be contrasted with
the size of a subroutine in a mathematics library (a few hundred lines), the size of a mature
scientific library (a half million lines), or the size of a very large scientific code such as used for
structural analysis (half million to a million lines). These numbers suggest that scientific pro-
grams are not (yet) as large as the worst cases in other fields. The complexity and amount of
analysis behind the best scientific programs, however, makes it fair to compare them to operating
systems code, where we are again in the realm of hundreds of thousands rather than multiple mil-
lions of lines. These mega-projects also employ hundreds of people for many years.

¢ Even though these terms refer most directly to the much maligned waterfall model of software
development, they are still useful for iterative models involving rapid prototyping or spiraling.
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Although some scientific codes appear to be etemal, only occasionally are really large teams
involved. According to one specialist, the typical experience with a big problem is that the proto-
type and proof of concept takes a few weeks, the full implementation takes most of a year, and
then the next few years are spent exploring the underlying mathematics and physics. Debugging
and testing happen at each stage; what is being sought changes.

3. Software Development and Environments

Large scientific programs require at least as much support as other kinds of software. It is unfor-
tunate that scientific programmers do not always take advantage of tools that would simplify
standard problems.

Each phase of the life cycle makes use of specific tools and techniques: requirements analyzers
in the early stages, compilers and debuggers in the implementation phase, regression test tools for
integration testing. In addition to this task-specific software, there are also needs that cross multi-
ple phases. Furthermore, support is needed to help coordinate the activity of teams of people and
machines. When enough pieces are available and share data and interfaces, we can speak of an
integrated software development environment rather than a collection of disconnected, albeit use-
ful 100ls. Some examples of desired environment services are:

3.1. Software Data

It is essential to store a wide variety of objects relating to the software development, and to be
able to associate and retrieve them later. These include not only code, but also documents,
requirements, design reviews, test sets, and many other types of information. Carefully con-
trolied file systems are the usual implementation route, but they do not provide ideal support.
Closely related to the database issue is maintenance of multiple versions, either because of histor-
ical evolution (bug fixes, functionality upgrades) or parallel usefulness (suitability for differing
machine architectures or utilizing different operating systems).

Configuration management software provides a way to combine many pieces in a variety of
forms. These constellations should be reproducible and modifiable.

Controlled data sharing and transactions provide means of coordinating operations and maintain-
ing consistency.

3.2. User Interface Software

It is a commonplace that the software associated with the human interface is an order of magni-
tude larger than the computational core of a system. Modem toolkits (such as those utilizing the
X window system) are usually themselves many hundreds of thousands of lines. They provide
many services, including access to programs, good graphics and uniform control of user input and
output devices (such as screens, speakers, mice, and keyboards).

The user interface software also assists the coordination among developers and helps maintain a
consistent image of the development process.

3.3. Process Related Software

The operations to be performed when building software can be very long and complex. Mechani-
cal assistance is essential to avoid errors and to improve efficiency. The assistance provided can
range from simple collections of commands 10 knowledge-based assistants. Between these
extremes are very useful programmable build tools and explicitly controllable process models.

In order to maintain control over the various concurrent activities, and to be able to replicate and
modify these operations, it is necessary to remember what was done and to record measures of
the activity (resources used, failures caused, and so forth). Gathering of such metric data is
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highly desirable if not very common in most environments.

These process control and measurement programs must operate across all phases of the life cycle
in order to do the most good. Distributed control and agents are essential for team coordination.

4. Needs of Scientific Computing

These comments apply to almost any type of software development. What is special about
mathematical or scientific computing? The following is a list of the most telling differences, and
their implications for the ideal environment

4.1. Graphics

Almost all modem scientific applications make very heavy use of graphics to plot functions, indi-
cate boundaries and contours, and so forth. A good picture is indeed worth a thousand numbers.
Scientific applications pioneered the use of color displays and graphics libraries. It is common
for the display activity to take more computing and more memory than the main calculation, and
for this to be a proper use of resources. The graphic display software must be properly integrated
and easily accessible to be most useful: it is useful to be able to plot graphs based on symbolic
formulas, large numeric data sets, and fresh inputs. Graphics are essential to development and
testing, not just the final execution. For example, it is almost impossible to correct huge compu-
tations without graphical support in the debugger.

4.2. Multiple Processors

The computing demands of scientific problems appear insatiable, and most effonts at building
parallel or distributed computers have been driven by scientific problems first, others later. It is
common 1o use a massive machine to crunch the numbers and then satellite machines to handle
human interfaces and analysis. A few processors sharing memory, or a multitude communicating
explicitly, usually need 1o be programmed in different ways. Problems of synchronization, daia
sharing, and so forth are thus intrinsic to heavy scientific computing. For development, it is
necessary to provide debugging facilities that permit single thread executions when necessary,
and otherwise help to untangle multiple simultaneous executions. The possibility of nondeter-
minism makes for many interesting problems.

4.3. Input/Qutput Requirements

High-resolution graphics already put a significant I/O load on applications. Problems that mani-
pulate huge amounts of data, frequently streamed through the processors, require special systems
architectures and applications approaches. Disk striping and parallel amms were first introduced
for scientific problems. The old rule of thumb of a megabyte/second of 1/O capacity for each
MIPS suggests very real problems are coming with massively parallel multi-gigafiop computers.

4.4. Data Storage and Manipulation

Big scientific problems consume and generate huge amounts of data, much of which must be
stored. It is not uncommon for a big project to need gigabytes of storage even during the early
phase of development. Huge data resources are also common in the commercial world, but some
types of data (e.g., floating point numbers, formulas and equations, graphss) and the need for
rapid access to ordered data sets are particular to scientific computing.

4.5. Floating Point

Scientific computing is usually equated to the use of floating point. Although this is not neces-
sary, it is usually the case. Whenever real arithmetic appears, complex and varying precision
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floating point also can be expected. Issues of precision choice, overflow, and so forth are part of
the art of mathematical computation. The environment must not only suppon floating point, but
provide special access to teckniques such as interval arithmetic and special data representations.

4.6. Symbolic Computation

Scientific computing is not only numerical. All numerical problems begin with a symbolic
representation in terms of formulas, equations, and so forth. Some problems are best solved
purely in the analytic domain, many benefit from a mixed approach, with parts of the problem
handled by symbolic manipulation, followed by numerical approximations, followed perhaps by
another analytic phase. Symbolic calculations will be extremely common during the develop-
ment phase, and still important in the middle of the computation.

4.7. Exception Handling

Although handling of exceptional conditions is a general software design and implementation
problem, it is particularly acute with scientific computing because of the many ways a floating
point computation can go astray. We already have problems with imprecise interrupts on scalar
machines; the problems are far more complex with optimized array or vector code. The handling
of exceptions is partly a hardware problem, partly a systems architecture problem, partly a
language problem, and partly a user interface problem. No single solution will suffice.

4.8. Languages

Scientific computing has for many years been done primarily in dialects of Fortran. Many special
purpose languages have been devised to handle specific tasks, and many of the tools needed to
build sophisticated programs are not available in Fortran. Many other languages are now also
used, but the Fortrans probably dominate. (Algebra systems are frequently written in LISP, win-
dowing packages are likely to be written in C.) Thus, multiple language environments, with the
complexities this forces on interface checking and on communication, are a fact of life for large-
scale scientific computing.

4.9. Libraries

Much of the reuse and communication of algorithms in the fields of scientific computing have
traditionally been handled through libraries, either locally maintained or internationally available.
This dependence on libraries has many advantages, but it does force cenain assumptions about
separable modules. In the future, library services will continue to be very impornant, but as men-
tioned elsewhere closed packages will also be very important elements of the construction of big
systems.

5. Future Environment Issues

In the future, scientific programs will be assembled out of larger units — subsystems and packages
rather than routines from libraries. This means that the development environment must make it
casier to assembie the right versions and test them. The programs are likely to be larger, putting
more demands on the execution capabilities of the development environment. As parts will be
proprietary, source code will frequently not be available, and so the debugging techniques will
need to be able to help even in the face of enforced ignorance.

As massively parallel machines become more common, the development environments will need
to have parallel capabilities to provide realistic testing and debugging facilities. (It is not accept-
able that the program under test take a century to execute, and it must suffer the same synchroni-
zation problems as the full-blown version.)
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Abstract

This paper describes restructuring systems for the
development of parallel programs to run on a variety
of different architectures. The authors explain why
they believe that current methods must be supple-
mented by knowledge-based techniques if such tools
are to mature to the extent that they are able to pro-
vide efficient and powerful support environments for
numerical programming on parallel machines, where
performance of the target code is crucial.

Design criteria are introduced for a multi-layer,
multi-target, intelligent programming environment for
the efficient solution of numerical problems on a va-
riety of parallel architectures. At the highest level,
this environment permits a numerical problem formu-
lation in a problem-oriented specification language,
using familiar mathematical concepts such as PDEs
or ODEs. The system provides a rich set of automatic
tools which transform specifications step by step into
architecture-specific Fortran dialects that exploit the
inherent parallelism of the given architecture. Fortran
90, the new Fortran standard, plays a central role in
the environment by serving as a target as well as a
source language.

1 Introduction

Parallel programs are very much harder to develop,
debug, maintain, and understand than their sequential
counterparts. One reason is the difficulty to establish
correctness - which must take into account temporal
conditions such as liveness, deadlock-freeness, process
synchronization and communication. Another reason
is the diversity of concurrent architectures and the
need to produce a highly efficient program, fine-tuned
to the specific target architecture. The impact of task
granularity on a concurrent algorithm, the properties
of the memory hierarchy, and the intricacies involved
in the exploitation of multi-level concurrency, for ex-
ample, must all be carefully analyzed and used to tune

*The work described in this paper is being carried out as
part of the research project "Virtual Shared Memory for Mul-
tiprocessor Systems with Distributed Memory” funded by the
Ausiuian Research Foundation (FWF) under the grant num-
ber P7576-TEC. The authors assume all responsibility for the
contents.
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a program. The adaptation of an initially inefficient
algorithm to a specific hardware is often called per-
formance debugging, a term that suggests that the
correctness criteria for a concurrent algorithm should
include requirements for its performance on a given
architecture. An inefficient, but otherwise correct pro-
gram is of practically no use for execution on a super-
computer.

Further, paralle] programs are seldom portable: a
program that executes effectively on one concurrent
machine (for example, a Cray X-MP) cannot in gen-
eral be assumed to work with comparable efficiency on
another concurrent architecture (for instance, a hyper-
cube), and it is difficult to make the necessary trans-
formation.

Thus it is not only vital to develop tools to assist
in all phases of parallel program development: the de-
sign of such tools must pay due regard to the crucial
issues of performance and source code portability. So,
whilst paying attention to such issues as the provision
of a suitable user interface, we must judge a paraliel
programming environment primarily by its ability to
provide:

o high target code efficiency
o portability

¢ powerful automatic support for program devel-
opment, debugging, and maintenance.

In this paper, we claim that - as a result of the
complexity of the task - these objectives can only be
achieved by using a knowledge-based approach, sup-
ported by extensive analysis facilities, and with a spe-
cial emphasis on performance analysis and prediction.
The paper describes the design principles for a multi-
layer, multi-target, intelligent programming environ-
ment for the efficient solution of data-parallel numeri-
cal algorithms on parallel machines. A key role in this
environment is played by the new Fortran standard
Fortran 90, which serves as a target (for transforma-
tions from higher language levels) as well as a source
language.




The paper is structured as follows: In Section 2,
we outline the capabilities of state-of-the-art program
restructurers for parallel programming, and identify
some important elements which are missing in the gen-
eral approach taken. We then introduce the main fea-
tures of an advanced parallel programming environ-
ment which overcomes these drawbacks, and take a
closer look at the kinds of knowledge which will be in-
corporated in such a system. In Section 3, we describe
the major design features of such an environment. The
paper closes with a brief summary (Section 4).

2 Current Programming Environ-
ments

In this section, we outline the design of three exist-
ing program restructuring systems for numerical com-
putation, which were developed to assist in the task
of generating parallel code for several different archi-
tectures. They all operate on sequential FORTRAN
programs.

2.1 The Design of Three Existing Sys-
tems
2.1.1 Parafrase

Parafrase is a tool for transforming a FORTRANG66 or
FORTRANTT7 program into a semantically equivalent
extended Fortran program adapted to meet the re-
quirements of a particular kind of machine. Developed
at the University of Illinois at Urbana-Champaign in
a long-term research effort centered around D. Kuck,
it was the first systematic attempt to transform se-
quential Fortran programs into concurrent programs
and was aimed at register-to-register and memory-
to-memory vector machines, array processors, and
shared-memory multiprocessors ([Kuck 84],[Poly 86}).

To restructure a program with Parafrase, users in-
put a sequential program together with a list of the
transformations they require. These transformations
are encoded as procedures that may read and/or write
the program; they are applied in the order specified
in the list and each one performs a source-to-source
transformation. Over 100 different transformations
are available, ranging from architecture-independent
ones to machine-specific transformations, which adapt
the program to the requirements of a particular tar-

et machine. Parameters, known as switches, are used

oth to control such functions as printing or debug-

ing and to provide transformations with information.

he user may also convey information to Parafrase
by means of assertions and commands embedded into
the source program. Thus the user must specify every
transformation performed on the input code, paying
due regard to those which will result in code suitable
for the target system architecture. Note that this is
a laborious task requiring a great deal of expertise on
the part of the user, and that the transformation pro-
cess itself is slow, since each pass is implemented as a
source-to-source transformation. On the other hand,
Parafrase can be easily extended by new transforma-
tions.
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To help the user evaluate the quality of the re-
sults of transformations, Parafrase provides statistics
to show the fraction of loops in a program that have
been restructured.

PFC and PFC*

PFC (Parallel Fortran Converter) is an automatic
source-to-source vectorizer that translates from For-
tran 66 or 77 into Fortran 8X. It has been under de-
velopment since 1979 by K.Kennedy and his group at
Rice University, Houston, and was initially based on
Parafrase ([AllKe 82]).

2.1.2

PFC first transforms the source program into an
internal representation similar to those used in con-
ventional compilers, and essentially based upon an ab-
stract syntax tree and the associated symbol table. It
carries out this task with the efficiency of a compiler
for a sequential computer. In addition to standard
data flow analysis, the tool performs data dependence
analysis and applies a set of standard transforma-~
tions. Interprocedural analysis is performed. All PFC
transformations manipulate the internal representa-
tion, rather than making a source-to-source transfor-
mation, which makes the system more than an order
of magnitude faster than Parafrase ([AllKe 87]). How-
ever, 1t provides much fewer transformations and there
are fewer options available to the user.

PFC*, an extension of PFC, implements Callahan’s
parallel code generation algorithm for shared memory
systems ([ACK 87], [Call 879. In addition, elements
of an interprocedural dependence test have been im-
plemented.

The efficiency of this kind of approach is encourag-
ing: the extensive analysis it applies provides essential
information for the task of restructuring: however, not
all information required in this process can be derived
statically.

2.1.3 SUPERB

SUPERB is an interactive restructuring tool which
translates Fortran 77 programs into concurrent
SUPRENUM Fortran programs for the SUPRENUM
computer ([Giloi 88]), a distributed-memory multi-
processor whose computing nodes, in turn, contain
pipelined vector units. Thus SUPERB restructures
In two phases: First coarse-grain parallelism is deter-
mined and program execution is distributed over a set
of processes: tﬁren it vectorizes the resulting code for
the individual nodes of the machine. The general ap-
proach taken for restructuring in SUPERB is based on
data partitioning:

SUPERB assumes a Single-program-multiple-data
(SPMD) model, such that each process executes the
same program, but is applied to different portions of
the data domain. At the outset of parallelization, the
user must specify a data partition for each array in
the program. This is a crucial step, since the way in
which the program’s data is partitioned and mapped



determines the process structure of the parallel pro-
gram and in particular, the communication required;
hence, it also determines the overall performance of
the parallelized program. The subsequent creation of
tasks and 5eneration of communication is performed
automatically.

The system’s front end first transforms a Fortran 77
program into an intermediate representation consist-
in% of an attributed abstract tree, an associated sym-
bol table, flow graphs, and initial data flow informa-
tion. The program representation is then normalized,
making the subsequent application of transformations
simpler and more efficient.

The core of the system comprises a set of routines
in an analysis component and the transformation cat-
alog; these routines manipulate the program’s inter-
mediate representation. The analysis component fur-
nishes a collection of tools for program flow and de-
pendence analysis, using both intraprocedural and in-
terprocedural analysis techniques.

The interactive component acts as an interface to
allow control of the other system services by estab-
lishing a two-way communication link between the
user and the modules of the system. Menus are pro-
vided so that the user may select individual transfor-
mation strategies or request other services from SU-
PERB. At the end of a restructuring session, the back
end uses the information contained in the transformed
intermediate representation to produce a concurrent
SUPRENUM Fortran program containing message
passing operations and vector instructions. SUPERB
puts a good deal of effort into optimizing the tar-
get program, in particular extracting communication
from loops whenever possible, and combining indi-
vidual communication statements (by vectorization
and fusion) to reduce the overall communication cost
((GerZi 90?)

SUPERB was developed at Bonn University under
the direction of H. Zima; a more detailed description
of the system is to be found in [ZBG 88), [Gernd 89].

2.2 The Limitations of Current Program-
ming Support Systems

There are a number of reasons why the approaches
described above to build restructuring systems will
not, of their own, suffice for the highly complex and
challenging task of providing a mature programming
environment for parallel systems. These systems will
need to retain efficiency while providing a level of guid-
ance and a degree of flexibility not achieved hitherto,
and must satisfy the needs of a broad spectrum of
users, some of whom will require an iniegrated system
to work as automatically as possible, whereas others
will expect tools to provide them with detailed and
precise information to enable them to make the ma-
Jor strategic decisions for parallelization. We discuss
some of the missing features more fully below (cf. also
{ChaHe 91]).
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2.2.1 Current Restructurers Lack Explicit
Structured Knowledge

A substantial amount of knowledge was used to build
the current generation of restructuring systems, and it
has been incorporated into them. This knowledge is of
several kinds, and includes facts about a given archi-
tecture or range of architectures, the target system’s
software environment and the related programming
paradigm. A precise knowledge of preconditions for
valid program transformations was used to enable the
restructurer to test for these and perform the appro-
priate transformation automatically when instructed
to do so. The knowledge of a few useful sequences
of transformations enabled an automatic approach to
certain tasks. But this knowledge is buried in many
thousands of lines of code, where it cannot be easily
accessed, modified or extended; nor can it be used to
reason about the transformation process.

Some restructurers perform a good deal of advanced
program analysis and store the results in data struc-
tures which provide an easily accessible base of infor-
mation about the program. But apart from some low-
level information (sucﬁ as details of data dependence),
this information is hardwired into the program, in a
form which makes it inaccessible to the user.

Parallel computing systems are in a constant state
of change: not only are new architectures regularly in-
troduced, existing machines are modified extensively
or extended to increase their overall performance,
and compilers and system software are often updated.
Current parallelizing tools have not been designed
with this kind of change in mind: the implicit nature
of the knowledge they embody makes them inflezible,
and in general, extension or modification will involve
a major programming effort.

2.2.2 Current Systems Lack “Intelligence”

Apart from certain pre-defined sequences of transfor-
mations, which often have the task of normalizing
programs, current systems require the user to specify
which transformations are to be applied to the pro-
gram and (where relevant) how and where to apply
them. This requires almost complete manual control
of the overall transformation process.

These restructurers offer no gutdance: they do not
help the user to select certain regions of the program
for transformation or further analysis, nor do they sug-
gest a certain transformation or set of transformations
for application. Further, they generally lack adequate
facilities for evaluating the eftect of transformations
once they have been applied. The crucial decisions
are the responsibility of the user. But many of the
decisions to be taken cannot be intuitively answered,
even by an experienced programmer of parallel sys-
tems. There are different, and sometimes conflicting,
goals to be attained (e.g., load balancing vs. minl-
mization of communication), and non-trivial trade-offs




to be considered.

Further, restructurers are currently not able to ad-
vise the user about ways to improve his program: re-
structuring systems are programmed in such a way
that they will recognize and transform certain kinds
of codes better than others. But the only ‘ype of in-
formation current systems can provide the user with
about his program is at a very low level and consists
of such objects as symbol tables, call graphs and de-
pendence relationships between statements.

Thus present-day restructurers do not achieve some
of the major goals for advanced parallel programming
tools: they do not relieve the user from the burden of
understanding fine details of the target machine, its
programming paradigm and the process of program
restructuring itself. The quality of the target code de-
pends largely on the expertise of the user in all of these
areas.

2.3 What Kind of Support is Required?

If we want to construct tools which facilitate the
process of parallel program development and produce
efficient code, it is essential that we overcome these
deficiencies. We therefore expect that future program-
ming support systems should:

Contain explicit knowledge about:
L]

architectures, machines,
compilers, and restructurers

the program: how it performs (algo-
rithmic properties) and what it does
(functional specification)

problems: standard numerical prob-
lems and their solutions, i.e. their effi-
cient implementation on a given set of
architectures

strategies: what goals to pursue and
how to co so

languages,

Be interactive: Even automatic parallelizing
tools cannot perform without assistance
from the user. One of the main reasons for
this is the undecidability or intractability of
many relevant problems and the lack of ade-
quate heuristics for handling them; further-
more, a static analyzer will have no infor-
mation at all on variables whose value is in-
put during program execution. The user will
play an important role, informing the system
of global relationships (some of which may
be due to high-level properties of the algo-
rithm) which an automatic state-of-the-art
tool cannot detect.

Be easily modifiable: It will be necessary to re-
target existing systems, to extend them by
new transformations and to modify them
in response to target system developments.
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Since in particular architectural and soft-
ware system changes are rapid, it must be
possible to adapt to them without a major
reprogramming effort. This may be greatly
facilitated by the explicit representation of
knowledge within the system.

Have tools for performance prediction and
measurement: Performance tools will not
only identify the most important areas of ex-
isting code. They will also support the selec-
tion of appropriate algorithms, and help de-
termine appropriate transformation strate-
gies. This may involve invoking a perfor-
mance prediction tool, running selected ar-
eas of the corresponding code with sample
input values, or accessing performaace infor-
mation stored within the knowledge base.

Since the primary motivation for using par-
allel systems is to attain high performance,
the environment must provide appropriate
tools for measuring and analyzing achieved
performance; feedback from these tools is
of critical importance for a knowledge-based
system.

2.4 Elements of a Knowledge-Based Pro-

gram Development System

An advanced programming environment should be
organized as a collection of knowledge-based subsys-
tems with different levels of expertise. The advan-
tages of this approach are threefold: 1) The possibil-
ity of rapid prototyping, 2) relatively easy modifica-
tion of the knowledge-based system if the underlying
system changes, and 3) the availability of an explana-
tion facility. So far, few attempts have been made to
develop restructuring systems using these techniques
([Bose 88a),[Bose 88b),[WanGa 89],[Wang90]).

The different kinds of information available should
be organized into knowledge bases containing infor-
mation about the application program, target envi-
ronments, rules for transforming programs and facts
about performance. It must be interactively accessible
by the user and all tools in the system.

Objects in the knowledge base pertaining to an ap-

lication program may include units (procedures, dec-
raration libraries, macros, etc.), modules (structured
collections of units), and programs. Objects are stored
in an internal representation (procedures, for example,
may be represented as abstract trees, together with
a symbol table). They may exist in more than one
version: for instance, a program may be present in its
original form and in one or more transformed versions.

Information about such objects may include: the
control flow graph, the results of data flow analysis,
the call graph, the dependence graph, performance in-
formation, and linkage information.

The set of tools in a development system should be
iniegrated: there should be a well-defined interface not




only between the tools and the user, but also between
these and the information stored in the system. Expla-
nation facilities should guide the user in the complex
process of program restructuring.

Knowledge relating to transformations should be
organized in a modular fashion.

Within the environment, different goals may be
pursued by different parts of the system, thus requir-
ing specific strategies for applying sets of transforma-
tions. The following section (Section 3.1), for example,
describes a system with several distinct layers, each of
which performs a different kind of program transla-
tion. Goals may be achieved by pursuing sub-goals,
which also require knowledge on how transformations
may be used to do so. Thus this information will be
hierarchical. It includes:

General Transformations This kind of knowl-
edge relates to the languages involved and
to the preconditions and effects of gen-
eral transformations, such as those for nor-
malization and standardization, loop inter-
change, scalar expansion, etc. For exam-
ple, the effect of loop interchange can be
described by specifying the modification of
array access patterns.

Architecture-Specific Transformations
Some transformations relate specifically to a
certain architecture (such as SIMD, shared-
memory MIMD, or distributed-memory
MIMD), without exploiting specific machine
features.

Machine-Specific Transformations

Knowledge to generate code for a particu-
lar target machine involves identifying and
applying a specific set of machine-specific
transformations which address the detailed
properties of a particular machine, such as
registers, local memories, and the communi-
cation mechanisms. The system should be
structured in a such a way that it is easy to
include knowledge about new machines.

The sources of knowledge acquisition are primarily
{ZiCh 90]:

¢ Papers and books about the subject,
o the properties of existing restructuring tools,
¢ human experts in the field, and

o the results of experimentation with various sys-
tems and characteristic numerical programs.

Note: A more advanced approach than the one we
have described so far would attempt to “understand”
the essence of an algorithm on a very high level and
perform a transformation into a possibly completely
different parallel algorithm at that level. While a gen-
eral solution of this problem does not exist, we expect
that a number of standard patterns can be identified
for which automatic matching can be performed.

110

3 The Design of an Advanced Pro-
gramming Environment

3.1 System Structure

Figure 1 shows the structure of an advanced parallel
programming environment designed at the University
of Vienna. in this system, we strive to make the pro-
gram development process as automatic as possible,
implementing an expert system approach that is sup-
ported by extensive analysis and guided by knowledge
about algorithms, architectures, program performance
and heuristics. On the other hand, since automatic
translation will not produce optimal or near-optimal
results under all circumstances, and will require user
support for some tasks, the system will be designed
to be interactive, allowing the user to furnish relevant
strategic information and the system to explain the
reasoning behind its transformation decisions.

It contains five levels, each of which is associated
with one or more languages, starting with the high-
est, problem-oriented level (level 1), down to the most
concrete, target machine specific level (level 5):

o Level 1: The Problem-Oriented Specification

This level provides a set of problem-oriented lan-
guaies which allow the user to specify a problem
in the terminology of the application domain.
These are restricted to numerical problem do-
mains. For example, the equilibrium states of
physical systems may be described by elliptic
equations; problems in this field generally re-
quire the determination of a function that sat-
isfies a given partial differential equation (PDE)
on some domain, and some additional conditions
on its boundary.

Level 1 enables a problem formulation only; no
reasoning about algorithmic solution approaches
is done at this level.

Level 2: The High-Level Algorithmic Lan-
guage

HAIL (High-level Algorithmic Imperative Lan-
guage) is an object-oriented, high-level algorith-
mic language which allows the user to specify
algorithmic solutions for numerical problems at
a very high level of abstraction. In particular,
a flexible abstract data type specification facil-
ity permits the declaration of problem-oriented
data structures such as grids, grid hierarchies,
trees, vectors, and matrices together with the
associated operations. Furthermore, abstract
control mechanisms allow the formulation of it-
erations over partially ordered sets in a way
which is architecture-independent. Some im-
ortant concepts in HAIL are derived from the
anguage SUSPENSE ([RuWi 89]), developed at
Bonn University as part of the SUPRENUM
project.




This level serves two purposes: First, if the user
has specified the problem at level 1, then its re-
alization at the algorithmic level requires the se-
lection of a solution method and its expression in
HAIL. This transformation will be supported by
an expert composer, which uses an approach
based on knowledge about the domain of dis-
course, the high-level algorithmic languages, the
formulation of algorithms at that level, and the
target architecture.

Alternatively, the user may directly enter level
2 by explicitly formulating the problem solution
in HAIL, bypassing the language features pro-
vided at level 1 and the expert system support
for their transformation.

It is our objective to design HAIL in such a way
that it can serve as the principal basis for pro-
gram development, testing, and maintenance.
This means that, in general, the program devel-
opment process from level 2 downward should
be completely automatic, and that, in particu-
lar, the user should only have to deal with code
from levels below that of Fortran 90 if the tools
have failed to generate target code with an ad-
equate measured performance (but can access
and modify code at all levels if desired).

Level 3: The Algorithmic Language (For-
tran 90)

The language of level 3 is the new Fortran stan-
dard Fortran 90 (F90), extended by an annota-
tion language (AL). AL allows the formulation
of assertions that can be used to guide the trans-
lation of F90 programs into lower-level code and
to enhance the efficiency of the translation pro-
cess as well as the quality of the generated target
code. Assertions may be related to knowledge
existing at a higher level or may be explicitly
provided by the user. They can be either global
or bound to specific program units.

The principal reason for the pivotal role played
by F90 is our expectation that F90 will be
accepted and adopted by the Fortran commu-
nity as the new standard for programming nu-
merical problems. As a consequence, F90 will
serve as the main programming language in this
field, and at the same time establish a gen-
erally acknowledged, machine-independent lan-
guage level which provides portability across a
wide range of architectures. These advantages
far outweigh the difficulties involved in suitably
defining AL and guaranteeing the proper trans-
fer of high-level information to lower levels.

Thus a problem solution described with the
means available at level 1 or 2 is translated into
a portable code version at level 3, which may be
transferred to other systems or users. We per-
mit, however, a direct translation from a level

111

2 program specification to the levels 4 and 5, in
order to obtain maximum efficiency for the com-
pilation process as well as the generated target
code.

¢ Level 4: Enhanced Algorithmic Language
(FORUM)

FORUM is a F90 superset which contains lan-
guage features for the specification and control
of parallelism in an architecture-independent
way. We plan to define a language that can
be efficiently translated for a variety of archi-
tectures, including at least distributed-memory
systems (DMS) and hierarchically structured
shared-memory systems.

Examples of FORUM features (in the context of
DMS) are specification statements for the dis-
tribution and alignment of arrays (c¢f. [CHZ 91],
[BCSZ 91)).

In view of the low level of FORUM, we do not
expect that users will routinely formulate pro-
grams in this language. However, situations will
arise in which a tool such as an automatic data
partitioner does not yield acceptable results. In
these circumstances, the user must have the op-
tion of interactively controlling the translation
process, thus directly influencing critical imple-
mentation decisions.

As already mentioned, we expect FORUM to be
the target of a translation from either level 2 or
3.

¢ Level 5: Target-Oriented Fortran Dialects
(DIALs)

Level 5, the lowest level considered in our pro-
gramming environment, is the level of target-
machine oriented Fortran dialects. This in-
cludes languages such as SUPRENUM Fortran
([Comp 89%1 for the SUPRENUM supercom-
puter, CM Fortran for the Connection Machine
CM-2, and Cedar Fortran, and will include ma-
chines with any of the architectures mentioned
above. Note that level 5 consists of source lan-
guages only, and single-node compilation is not
considered here.

3.2 Levels and Languages

In this section we present some general features of
levels as introduced above, and examine the relation-
ships between different levels and the associated lan-

guages.

Let S denote a language at level i 5 1<i<5). Then
S will satisfy certain properties and a number of fa-
cilities are available in conjunction with the language,
independent of the specific choice:




¢ Associated with S there is a semantic model
which forms the basis for reasoning about pro-
grams at level i.

A knowledge base KB(S) stores knowledge
about the semantics of S, including, for level
1 > 1, knowledge about the efficient formulation
of algorithms in S. KB(S) also contains informa-
tion relevant to intelligent guidance of the ap-
plication of program transformations (depend-
ing on criteria such as performance) and reiated
heuristics.

¢ Analysis tools perform a static (i.e., compile-
time) examination of program properties and
carry out certain standard transformations.
These include:

— constant propagation

— the determination of definition-use and use-
definition chains

— dependence analysis

— performance analysis (in dependence on
problem size and archxt.ect.ure§>

e An editor is provided which offers the user a
means to formulate programs in S or change ex-
isting programs interactively. In addition to syn-
tactic knowledge, the editor has access to the
knowledge base KB(S) and communicates with
the user via an assertion and command language
that is closely tied to the semantic model asso-
ciated with S. Furthermore, the editor is sup-
ported by a set of incremental analysis tools.

* Aninterpreter for S provides a rapid prototyp-
ing facility.

¢ A debugger for S allows the user to test and
debug programs at the level of S.

o A set of restructuring transformations
(RTs), which preserve the semantics of pro-
grams. The main purpose of RTs is the mod-
ification of the structure of programs in such
a way that the match between the parallelism
recognized at a given level and the parallelism
at the next lower level is improved. For ex-
ample, the application of loop distribution to a
multi-statement Fortran loop creates a sequence
of single-statement loops, which may be trans-
lated to vector statements at a lower level.

In addition to the RTs that are associated with a
given language S, there is a set of inter-level trans-
formations (ILTs) for any pair of languages S,S’,
where S is of level 1 < 4 and S’ is of level 1 + 1. ILTs
translate - in a semantics-preserving way - elements of
S to elements of S’. These transformations implement
the translation from more abstract to more concrete
programs by a process of step-wise refinement.

he whole process of translating a specification P1
(at level 1) into a program P5 formulated in a target-
oriented Fortran dialect is performed by applying a
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sequence of RTs and ILTs to P1. For example, if P1
is a PDE that is defined on some domain, with an
additional set of boundary conditions, then the major
steps of transforming P1 into a program P5 in INTEL
iPSC Fortran may be as follows (Pi denotes a program
at level 1):

P1 - Problem specification
PDE on domain R with boundary conditions

The application of the expert composer to P1
implies the discretization of R and the selection of
a solution method (e.g., the multigrid method with
a corresponding choice of a relaxation method and a
global control algorithm such as V-cycle or W-cycle),
which yields a HAIL program, P2:

P2 - High-level language program

P2 specifies an algorithmic solution to the given
problem in the framework of an object-oriented ap-
proach which allows the use of domain-specific data
types (such as grid hierarchies) in combination with
abstract, high-level control structures (such as itera-
tors over grid hierarchies).

The high-level constructs of P2 can be translated
step-by-step into the constructs of the procedural
programming language F90. For example, a HAIL-
iterator applying a given operation to all elements of
a grid according to some partial order specified by
an order star may be translated into a F90 DO-loop,
anéxotated by an assertion stating the original partial
order.

P$§ - F90 program

P3 specifies a solution of the problem at a machine-
independent, portable, intermediate procedural level.
At this level, special library functions may be included
in the program.

The only explicit parallelism contained in P3 is the
fine-grain parallelism of array operations and state-
ments. The translation to the next-lower level (FO-
RUM) provides the basis for making the coarse-grain
parallelism in the program explicit. This can be
done by generating statements for the partitioning and
alignment of arrays, based on an extensive analysis
process of the program’s reference patterns:

P4 - FORUM program

P4 specifies a solution of the problem at a low pro-
cedural level.

The transformation from P4 to P5 is performed by
modifyhﬁ P4 according to the data partition specified
in P4. This process consists of the three steps mask-
ing, generation of communication, and optimization,
which are similar to the corresponding actions in SU-
PERB. The optimization step is crucial for obu.in;u;ﬁ
efficiency at run-time as it recognises certain stand




communication patterns and transforms them into ef-
ficient collective communication routines. This pro-
duces the final version:

P5 - INTEL iPSC Fortran program

The compilation of P5 is not directly of concern
to us; however the generation of P5 has to take into
account the capabilities and idiosyncrasies of the com-
piler as well as the target machine, as discussed above.

4 Conclusion
In this paper, we introduced the major features
of an advanced programming environment, and de-
scribed the structure of an intelligent hierarchical pro-
5rammm' a.glenvironment to support the development of
ata-parallel numerical programs. This system makes
extensive use of knowledge-based and performance
analysis techniques. Other research in this area has
been pursued, in particular, by Wang at Purdue Uni-
versity ([Wang90], {Wang85],[WanGa 89)).
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Figure 1: The structure of an advanced programming environment
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Fortran Interface Blocks as an
Interface Description Language for
Remote Procedure Call

Paul E. Buis
Wayne R. Dyksen
John T. Korb

Abstract

In this paper, we discuss the use of Fortran 90 interface blocks
as an interface description language (IDL) for remote procedure call
(RPC). An implementation of a stub generator based on this language
is used to generate an interface between Fortran 77 and an innovative
RPC system. An example application is remote access to scientific
subroutine libraries such as IMSL.

1 Introduction

With the existence of large networks of heterogeneous computers comes the
desire for truly distributed scientific computing. Users want to formulate
their problems on one machine, solve them on a second and visualize the
results on yet a third machine, all within one problem solving environment.
They want to apply transparently the power and special architectures of
the machines on their networks to the appropriate parts of their problems
without learning the intricacies of new operating systems or compilers. Users
want to exploit this network power transparently, from their desk, without
remotely logging into another system.

To this end, we are exploring the application of distributed systems
technologies to scientific computing. We have developed a new paradigm
for client-server interaction called remote interpretation in which the server
executes a high-level language interpreter and the client sends expressions
in this language to be evaluated. Remote interpretation can be used to
simulate more traditional forms of client-server interaction, such as remote
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procedure call (RPC). In order to construct large distributed systems, we are
building an automated programming tool to write the message passing code
for client-server interaction. The input to this programming tool, called a
stub generator, consists of Fortran 90 interface blocks. This paper describes
the use of Fortran 90 interface blocks for this purpose.

2 Remote Interpretation

In this section, the idea of using an interpreted programming language as
a control protocol for client-server communication is explained. The NeWS$S
window system uses the POSTSCRIPT language as an input language for its
server. POSTSCRIPT is a general-purpose stack-oriented language with good
image processing primitives. In the NeWS system, clients send POSTSCRIPT
expressions to the NeWS server where they are evaluated. This section
discusses the use of the Scheme programming language [3] in an analogous
way. Scheme is a general-purpose language with both good numeric and
symbolic processing primitives making it appropriate for use in scientific
systems.

For the purposes of discussion, the use of an interpreted programming
language as a control protocol will be called remote interpretation. This sec-
tion discusses an implementation of remote interpretation using the Scheme
language, and Sun XDR, concluding with a description of how to emulate
RPC with remote interpretation.

2.1 NetScheme

Scheme is a small Lisp-like language. It shares the syntax of Lisp and
uses a subset of Lisp operators. The primary difference is that names are
statically scoped rather than dynamically scoped. Scheme has a rich set
of numeric types: integer, rational, real, and complex. The inclusion of
real and complex numeric types is essential for use in scientific computing.
Scheme also supports lists and vectors.

NetScheme is our implementation of a Scheme subset with extensions
for distributed scientific computing. The NetScheme interpreter uses TCP
sockets for all input and output. The use of TCP enables both portabil-
ity and large geographic separation of clients and servers with reasonable
reliability.
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2.2 XDR

NetScheme uses the Sun XDR protocol for its data representation protocol.
That is, rather than sending printable ASCII strings to communicate data
values, a binary representation is used that conforms to the Sun XDR data
representation standard.

NetScheme is interfaced with the XDR protocol via four functions that
are built into the NetScheme interpreter. xdr-bind is used to start up the
XDR connection between client and server. xdr-recv is used to receive a
vector of homogeneous elements from the client. xdr-send is used to send
a vector of homogeneous elements back to the client. xdr-flush is used to
flush the output buffer of the server to the client.

The programming interface to XDR is specialized to the sending of arrays
of data rather than individual elements. The specialized code has been
observed to reduce the number of user-level CPU cycles by a factor of 10
and increase throughput by a factor of 2.

2.3 Simulating RPC with NetScheme

NetScheme can be used by a client to simulate remote procedure call. Recall
that in a remote procedure call system, the client sends a message containing
input parameters to the server, the server carries out a computation on
the behalf of the client, and the server sends the results to the client in a
reply message. To simulate this, a client can cause the server to execute an
xdr-recv, a function evaluation, and then an xdr-send to achieve the same
effect. For example, if the client wants to remotely call a function £, it can
emit “(xdr-send (f (xdr-recv))) (xdr-flush)” to the server and then
execute the code to send and receive the data over the XDR connection.

The advantage of using this RPC simulation is in its transparency to the
client designer. The designer can be blissfully ignorant of the fact that some
of the computations are being done remotely. The client implementor is
responsible for packaging the RPC simulation into a single procedure, hiding
the fact that the computation is not local. The next section describes tools
that will relieve the client implementor of the burden of writing this code,
making client construction very easy.
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Interface

Subroutine LSARG(N, A, LDA, B, IPATH, X)
Integer N, LDA, IPATH

Real A, B, X

Intent(In) N, A, LDA, IPATH

Intent(Out) X

Dimension A(LDA,N), B(N), X(N)

End Subroutine

End Interface

Figure 1: Example Fortran 90 interface block

3 An Interface Description Language

The interface description language (IDL) for an RPC system often parallels
the declaration constructs from the programming language used by its in-
tended clients. We wanted an IDL that matched well with Fortran, since that
is the primary language currently in use in scientific computing. To match
well, an IDL should have the ability to describe any subroutine interface
possible in Fortran. While Fortran 77 lacks pointers and aggregate types, it
does have conformant multidimensional arrays; i.e., arrays with dimensions
specified by the value of other arguments at call time. Another powerful
feature of Fortran argument passing is procedural parameters; i.e., passing
one subprogram as an argument to another subprogram. While these fea-
tures are directly supported in Fortran, they are not directly supported by
any of the existing IDLs.

Fortran 90 [1], a proper superset of Fortran 77, contains a syntax for an
interface block. The Fortran 90 interface block syntax is an almost perfect
match for an interface description language for distributed systems. For
each subprogram described in an interface block, all of the declarations are
included that specify the order, names, and types of each argument. These
declarations use the exact same syntax as is found in the executable code
for the subprogram. In addition to the declarations found in Fortran 77,
Fortran 90 adds an INTENT statement declaring an argument to be for input
only, output only, or for both input and output. An example interface block
is given in Figure 1.

From the information provided in such an interface block, one can gen-
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erate the structure of the request and reply messages needed in an RPC
system. The request message consists of those arguments with an input
intent, and the reply message consists of those arguments with an output
intent. The message consists of the value of each argument in the order the
arguments are specified. The value of array arguments includes not only the
values of the elements of the array, but also the total number of elements in
the array.

We have constructed an interface description language [2] using a subset
of the syntax for Fortran 90 interface blocks that allows specification of vi:-
tually all Fortran 77 subprograms. We only needed to make two small mod-
ifications to the Fortran 90 standard. First, while the Fortran 90 standard
permits arguments to have unspecified intent, we require that all arguments
used for input or output must have their intent declared. Fortran compilers
simply assume that unspecified intent is equivalent to an intent of both in-
put and output, and will therefore avoid making certain optimizations. In
our language, we assume that unspecified intent is equivalent to an intent
of neither input nor output; i.e., a scratch argument used only for the stor-
age space it provides the callee. This deviation from the Fortran standard
allows us to optimize the message passing to avoid unneeded transmission
of scratch values. Second, while the Fortran 90 standard permits an ar-
ray declaration to not specify the size of the trailing dimension, we require
that the size of all the dimensions of an array be specified. To compensate
for this additional strictness, we allow a broader class of size specifications
than the Fortran 90 standard which allows only literal integer constants or
simple integer arguments to specify a size. We expand the size specifica-
tion to allow for arithmetic expressions involving addition, multiplication,
division, modulo, maximum, and minimum operators, all using standard
Fortran syntax.

Since arguments are passed by value in both directions in such a system,
a potential for a subtle change in semantics exists if the target language
does not use pass-by-value-result semantics. Fortran is typically thought of
as pass-by-reference, but the Fortran standards have made the unenforced
stipulation that aliasing (i.e., having more than one argument contain the
same location in memory), is illegal. Because of the prohibition of aliasing,
no changes in the argument passing semantics occur when a pass-by-value
result mechanism is used in implementation. Hence, an RPC system for
Fortran can avoid any changes in argument passing semantics.
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4 Stub Generation

We have constructed a stub generator based on this IDL that generates
stubs for NetScheme. On the client side, RPC is simulated as outlined
in Section 2.3. On the server side, code is generated to add new built-in
functions to the NetScheme interpreter. Hence, the stub generator is used
to construct servers, even if the client will not perform RPC simulation.

The server stub generator provides the code to add Fortran routines
into the NetScheme interpreter. The NetScheme interpreter requires each
built-in function be implemented in C (since the NetScheme interpreter is
written in C) as a function with an argument list as its input parameter and
returning a vector of output values.

The stub generator is also capable of producing client stubs that simulate
remote procedure call. The use of such stubs is optional in the NetScheme
system. The automatically generated client stubs use both the TCP link
for the control protocol and the separate TCP link for the data represen-
tation protocol. Some care must be taken that the two links are properly
synchronized to prevent deadlock.

As a first step, the client stub uses the TCP link for the control proto-
col by calling fprintf repeatedly, once for each Scheme expression to be
evaluated by the server. First, a sequence of Scheme expressions is output
to define input parameters by invoking xdr-recv. Second, an expression is
output to invoke the server stub. Third, a sequence of expressions is output
that invoke xdr-send to instruct the server to send each output argument to
the client over the data representation connection. Fourth, a call to £flush
is executed on the output buffer associated with the TCP link.

As a second step, the client stub uses the TCP link for the data rep-
resentation protocol to send each input argument to the server. As the
server executes xdr-recv, it inputs an array of data. After all input argu-
ments have been output by the server, it calls xdr_flush to be sure that
all buffered data is actually sent to the server. Thus, if the total size of the
input arguments is sufficiently small, they all may be sent in a single TCP
packet.

As a third step, the client stub uses the TCP link for the data represen-
tation protocol to receive each output argument from the server. Since both
the TCP connection and the XDR routines are bidirectional, the same XDR
routines are used in this step as in the previous one (with the exception of
xdr_flush). At this point, the client and the server will be synchronized
completely and the server will be idle.
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5 Application: Remote Subroutine Libraries

This section explores an application of the approach described in the previ-
ous sections. Scientific programs often can be decomposed into 2 component
written by an application programmer and components supplied in the form
of subroutine libraries. The component written by the application program-
mer can reside in a client process and the components supplied as subroutine
libraries can be packaged into server processes.

The construction of a remote subroutine library can be automated using
the stub generators presented in the previous sections. First, one writes
an interface block that describes all the public subprograms in the library.
Second, the server stub generator is run to create a NetScheme server for
the library. Third, the client stub generator is run to create a set of client
stubs, one for each public subprogram. Finally, these stubs are placed in a
stub library that takes the place of the original library when the client is
linked.

5.1 Case Study: Remote IMSL

To demonstrate the feasibility of constructing remote subroutine libraries,
we have constructed one for the IMSL Math/Library. We constructed inter-
face blocks for 268 of the single precision routines. This process was partially
automated by a Fortran compiler that produced interface blocks as an aid to
optimization. However, the compiler was unable to determine the exact in-
tent of most arguments and did not specify the trailing dimension of arrays.
The total size of the resulting interface blocks is about 7000 lines.

The IMSL interface blocks were passed through the stub generators de-
scribed in the previous sections. The resulting server stubs are about 17,000
lines in a single file and the resulting client stubs about 37,000 lines in 268
separate files. Clearly, the use of a stub generator is beneficial, since hand-
coding and maintanence of such a large piece of code would be very difficult.

5.2 Performance Data

To demonstrate that the use of distributed systems is both practical and
has potential performance benefits for scientific systems, we used an early
prototype of our system to use a direct method for solving sparse, banded
linear systems of equations of the sort that arise from applying finite differ-
ence methods to discretize three dimensional, partial differential equations
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Problem Size

8| 10] 12| 14
Chient Server Number of Equations
Machine Machine 256 | 1000 1728 | 2744
Sun 3/50 (local) 48.4 | 276.0 | 1028.0 —
Sun 3/50 Alnant FX/80 | 2.7 8.2 26.7| 824
Sun 3/50 Cray XMP 2.0 3.2 54| 26.0
Sun 4/110 (local) 69| 323 171.0 | 570.0
Sun 4/110 Alliant FX/80 | 2.4 8.3 26.1 | 80.4
Sun 4/110 Cray XMP 2.0 32 54| 26.0
Alliant FX /80 | (local) 1.8 7.3 250 | 80.0
Cray XMP (local) 0.1 0.4 12 ] 19.6

Table 1: Elapsed Times in seconds to solve an elliptic PDE on various
machines with and without using RPC

(PDEs). Although the same code is capable of solving more complex.PDEs
in the same amount of time, the particular PDE we chose as an example for
timings was

Uz + Uyy + Uz = f(z,¥,2) on Q
“(-‘f,y,z) = g(a:,y,z) on 0
0 [0,1] x [0,1].

The client runs on a small workstation (such as a Sun 3 or Sun 4) and
forms the linear system of equations in ELLPACK standard format [4]. The
system is solved by an RPC request to a vector computer (such as an Alliant
FX/80 or Cray XMP).

The problem size, n, is the number of interior mesh points on each
edge of the domain. The discretization results in a sparse system of n3
linear equations with 7 nonzero coefficients per equation. The amount of
communication necessary using ELLPACK sparse matrix format is O(64n3)
bytes, the amount of memory needed for 64-bit LINPACK banded storage is
O(24n%) bytes, and the amount of work is ((2n”) floating point operations.
So, for a problem size of n = 10, there are 1000 equations with about 64
kbytes to transmit, 2.4 Mbytes to store, and 20 MFLOPS to perform.

Table 1 summarizes the timing results. The Alliant was located on the
same ethernet as the Suns, but the Cray was located off-site and accessed
by a T1 line. One can see a distinct advantage in using RPC with a nearby
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fast server as opposed to solving the problem locally. While use of a more
distant and faster server has some advantage for large problems, the raw
data indicate a high variability in response times due to highly varying loads
on both the remote machine and the network. Note that for machines on
the local network, communication times are small compared to computation
times.

6 Summary

We have shown that Fortran 90 interface blocks can serve as the basis for
an interface description language for a distributed system. We have used
such an interface description language to automatically construct stubs for
the NetScheme system. The server stubs provide new built-in functions for
the NetScheme interpreter. The client stubs simulate remote procedure call
by sending an appropriate sequence of NetScheme expressions and following
them up with an appropriate sequence of data transfers.

References

[1] American national standard for information systems programming lan-
guage Fortran, March 1989. Draft S8, Version 111.

[2] Paul Buis, Wayne Dyksen, and John T. Korb. Fortran interface blocks
as an interface description language for remote procedure call. Techni-

cal report, Computer Science Department, Purdue University, January
1990. CER-89-9/CSD-TR-953.

[3] Jonathan Rees and William Clinger. Revised® report on the algorithmic
language scheme. SIGPLAN Notices, 21(12):37-79, December 1986.

[4] John R. Rice and Ronald F. Boisvert. Solving Elliptic Problems using
ELLPACK. Springer-Verlag, New York, Berlin, Heidelberg and Tokyo,
1984.

124
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ABSTRACT

This paper presents an Al based problem solving environment for numerical simulation of
problems described by partial differential equations (PDEs). The system aims to allow users to
carry out simulation without knowledge of mathematics or numerical analysis. Three abstract
models (physical, mathematical and numerical models) are extracted as the essentially important
steps to automatise the numerical simulation process. Transformation between these models is
realised using two tailored knowledge-bases, which are organised in a frame based manner to
reflect the hierarchical nature of the domain knowledge. Localised rule bases are bound 1o each
frame definition to create the next level of the abstract model. This system has been coupled with
an existing PDE solver and realises an integrated problem solving environment for engineering

problems.

1 Introduction

With the development of powerful computers during the 1980s, many high-level numerical
software packages such as PDEQSOL [Umetani et al 1985, Kon'no et al 1986), ELLPACK [Rice
1985} and FIDISOL [Schonauer and Schnepf 1987] became available for solving problems
described by PDEs. Although such high-level software greatly reduces the effort demanded for
numerical simulation compared with coding in FORTRAN or C, it is still necessary for users to
supply considerable knowledge in order to carry out successful simulation. When the recent wide-
spread use of workstations is considered, it can be regarded as an urgent issue to eliminate the need
for specialised knowledge in order to allow users to exploit such high-level software.

A practical solution to this problem is to develop an Al-based problem solving environment that
may be integrated with existing numerical software packages. On this basis, several research
projects have been investigating the application of Al techniques to the area of numerical
simulation. The Numerical Algorithms Group (NAG) [Chelsom et al 1990] are developing
knowledge-assisted numerical routine selection tools for the diverse NAG FORTRAN library. The
EVE system is aimed at mathematicians [Barras et al 1990] and enables the users to create PDEs
from pre-defined primitive mathematical components. Another system which makes use of PDEs
as the interface level was reported by [Russo et al 1987], in which some of the numerical stability
and efficiency constraints are taken into account. These projects mainly aim at users who are
knowledgeable enough to make the right choices during the decision process or who are to a
certain extent familiar with mathematical expression.
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This paper presents an Al based problem solving environment AI-PDEQSOL for numerical
simulation described by PDEs. Unlike the problem solving environments discussed above, Al-
PDEQSOL allows users to deal with practical engineering problems without requiring specialised
knowledge of numerical or mathematical problem representation. Instead, the input 1o Al-
PDEQSOL simply consists of engineering keywords and problem parameters. The output of Al-
PDEQSOL can be dealt with by an existing PDE solver PDEQSOL and numerical simulation can
be carried out.

The remainder of this paper is outlined as follows: the process of numerical simulation is
analysed and the overall strategy used for the work is presented. Knowledge structures are detailed
in the context of frame-based knowledge representation. The inference process and integration of
the system with the existing PDE solver PDEQSOL is discussed.

2 An Overview of the AI-PDEQSOL System
2.1 Problem Analysis

In order to establish a proper approach to deal with the problems mentioned above, a careful
analysis of the process of numerical simulation has to be made. Figure 1 demonstrates such a
process between a real world problem and a numerical model by illustrating a user's problem of the
cooling of an electronic device. The definition of these levels are given here.
Real world problem

A real-world problem normally consists of a number of physical phenomena. In the problem, the
phenomena may be coupled with each other and the region may take three dimensional complicated
shapes. An example is given in Figure 1a. This level is not dealt with in this paper.
Physical Model

The physical model is a simplified and precise representation of a real-world problem, which is
considered to be the principal input level of AI-PDEQSOL. The contents are as follows:
1. The names of physical phenomena and boundary types
2. The regions over which each physical phenomenon takes place
3. The geometric descriptions of these regions
4. Source effects
5. Ininal state of each physical phenomenon which requires transient analysis.

Figure 1b illustrates a possible physical model for a cooling electronic device.
Mathematical Model

The mathematical model consists of a set of PDEs and boundary conditions which represents
mathematically the behaviour of the physical phenomena. The contents are as follows:
1. PDEs with source terms, boundary conditions and material properties.
2. Initial conditions for each time-dependent PDE.
3. The region definitions corresponding to each PDE.

Figure Ic illustrates the mathematical model of a cooling electronic device.
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Numerical Model

The numerical model contains all the information necessary to drive a PDE solver. Also a spatial
mesh and a time step must accompany each schematic description. Figure 1d shows an example of
the numerical model using the syntax of PDEQSOL.

2.2 System structure

AI-PDEQSOL has been realised based on a model transformation approach. A physical model is
taken as an input and converted to a mathematical model, then to a corresponding numerical model,
which is outputted in the form of a PDEQSOL program. These two stages of transformation are
carried out using two knowledge-bases; a Mathematical knowledge-base and a Numerical
knowledge-base. The overall structure of AI-PDEQSOL is shown in Figure 2. Each
transformation process is outlined as follows.

Transformation of physical model to mathematical model

1. The physical model is defined through the user interface data.

2. A set of PDEs and boundary conditions is created from the Mathematical knowledge-base.

3. Values are assigned to all the material properties referenced in each PDE and boundary
condition. They are retrieved from the material properties database.

Transformation of mathematical model to numerical model

1. A linearisation algorithm, a time expansion technique and a matrix inversion technique are
chosen from the Numerical knowledge-base.

2. A single ume-step and a spatial mesh division are calculated to satisfy numerical constraints

3. A PDEQSOL source code corresponding to a numerical model is generated.

Since a number of numerical models can be equally valid (one may be more accurate but less
efficient than another), AI-PDEQSOL generates several possible numerical models. The user is
consulted to take the final decision about which model is preferable for the actual simulation.

3 Knowledge Representation
This section deals with how knowledge is represented in the system. Knowledge can be
classified as follows.
1. Domain knowledge includes mathematical/numerical knowledge for describing problems.
2. Characterisation knowledge allows a given problem description to be characterised so that the
components of a technique for its solution can be extracted from the domain knowledge.
3. Constraint knowledge is represented by constraint rules which must be satisfied if a particular
solution technique is to give a satisfactory result.
4. Evaluation knowledge is used to estimate and rate the features (efficiency and accuracy) of the
numerical models derived from the transformation process.
The use of frame-based knowledge representation built using the object oriented paradigm has
been fully exploited to give a concrete form to the above knowledge. They are discussed in the
following sections in detail.
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3.1 Domain Knowledge

Domain knowledge is stored mainly in the two knowledge-bases.
Mathematical Know) -base

The Mathematical contains all necessary knowledge to form PDEs and boundary conditions. The
knowledge-base consists of a class hierarchy, which defines the templates of objects of which any
mathematical model is composed. The five primary classes are Phenomenon, PDE Group, PDE,
Term and Variable. As shown in Figure 3, these classes give a hierarchical representation of a PDE
definition. Each main class has the subclass structure shown in Figure 4. For example, the Term
subclasses are defined on the basis of terms which share common differential operators such as
div{(.)grad(.)}.

Knowledge associated with each class is stored as either structural links or localised rules bound
to the class. Using the rules, the appropriate instantiations from the knowledge-base classes (i.e.
components of a PDE group) are inferred during the first transformation. The structural links,
which correspond to the object (part-of) hierarchy between the instantiated objects, are also stored
in each class definition to relate the instantiated objects and to form a PDE group. This mechanism
is discussed in Section 4.1.

The Mathematical Knowledge-base also contains the knowledge required to set source terms and
boundary conditions for a PDE. Source terms are considered in the same way as other terms except
that the rules associated with them are related to the occurrence of two or more phenomena in the
given physical model. Boundary conditions are associated with each PDE class definition by
structural links.

Numerical knowl -ba

There are three substructures in the Numerical knowledge-base: Non-linear algorithms for
linearising PDEs, time Expansion algorithms for dealing with time-dependent PDEs, and Matrix
Inversion algorithms for solving the mamix resulting from discretisation of the PDEs.

The algorithms are closely related to the PDEs and therefore the objects in the knowledge-base
are linked from PDEs by a 'parts-of' link. The structure is illustrated in Figure 5. As with the
Mathematical knowledge-base, each algorithm class definition in the knowledge-base stores
localised rules. The rules are concerned with algorithm selection and contain the knowledge
necessary to link the PDEs in a mathematical model to the appropriate algorithm. By these rules,
connections between the characteristics of the PDE problem under consideration and applicability
of each algorithm are measured. For example, the following rule is stored associated with ILUCG
algorithm:

IF the PDE is symmetric THEN select ILUCG Method
3.2 Characterisation Knowledge

The antecedents of localised rules mentioned above relate to characteristics of the problem, rather
than to specific parameters. For example, in the first transformation, fluid flow must be
characterised as turbulent or laminar, or, in the second transformation, the PDE must be
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characterised as symmetric or asymmetric. This is achieved using characterisation knowledge. This
knowledge resides in the physical model and mathematical model class definitions and is currently
implemented as class methods bound to each model. The required information is determined by
calculating a characteristic number and comparing it with a threshold value.

3.3 Constraint Knowledge

Numerical solutions of PDE problems must obey certain well-defined numerical constraints.
Bounds on the spatial mesh size and the time step must be satisfied in order to obtain a stable and
accurate solution. In addition to numerical constraints, the user may supply personal constraints
such as a maximum CPU time or computer memory available.

This type of knowledge is represented as methods bound to the numerical model class definition.
Given an algorithm set derived from Numerical knowledge-base, these methods return the
appropriate spatial mesh and time step under the numerical and personal constraints. When suitable
mesh size or time step can not be determined within the constraints, the algorithm set under
consideration is abandoned and the next possibility is examined. This mechanism is discussed in
Section 4.2.

3.4 Evaluation Knowledge

The system generates a number of possible numerical models at the end of the transformation
process. Since each numerical model contains complete information to carry out numerical
simulation, it is possible to estimate its features, such as memory requirements, accuracy and CPU
time. In a similar way to the constraint knowledge, evaluation knowledge is stored as methods
bound to the numerical model class definitions.

4 Inference Process

The inference mechanism, the creation of a solution space and generation of PDEQSOL code are
discussed in this section.
4.1 Selection Mechanism

The essential part of the inference system in AI-PDEQSOL is a global selection mechanism
which acts over the hierarchical knowledge representation in the two knowledge-bases. The
selection mechanism scans the object hierarchy from the top to the bottom by referring to the
potential structural link specified in each class definition. A simple example of the action of the
selection mechanism is shown in Figure 6. Assume that the selection mechanism is working at
Object A which has been instantiated from Class A in a knowledge-base. The potential structural
links from Class A to lower level component classes are known and stored as domain knowledge.
The selection mechanism refers to these links and activates the localised rules associated with Class
B, C, D and E in turn. Each rule determines whether the corresponding class can be instantiated
under the given condition. If Class C and E are determined as usable, the instantiations (i.e. Object
C and E) are created and the actual "pan -of links are established with Object A.
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For example, the class definition of the diffusion-advection-equation contains the potential
structural links to its components: time-term, advection-term, diffusion-term and source terms. If
the physical model under consideration is characterised as transient, pure-diffusion and non-
coupling, only the time and diffusion terms are instantiated and linked with the diffusion-
advection-equation object.

4.2 Creation of a Solution Space

The process of mathematical model to numerical model transformation involves several decision
stages as described in Section 3.2. These stages are closely related to each other and cannot be
made in a simple serial fashion. Referring to Figure 7, in the first three stages, by applying domain
knowledge in the algorithm knowledge-base to the chosen PDE, the selection mechanism works so
that more than two possibilities can be generated at each decision stage. In the time step and mesh
division stages, constraint knowledge is applied and a mesh pattern and a time step are set for each
branch. Some of the solution branches may not satisfy certain constraints and are therefore
abandoned as dead ends. When a complete solution space is created, the methods which
encapsulate the evaluation knowledge are invoked and the features of each solution are estimated.
4.3 Creation of Numerical Simulation Code

When one numerical model has been chosen by the user, the system invokes the code generation
methods which are bound to the algorithm objects of the selected numerical model. Each algorithm
object holds a code generation method particular to the algorithm. A series of these code generation
methods expands the PDEs in the numerical model into a PDEQSOL source code, which can then
be executed by the PDEQSOL system.

5 Implementation and Current Status

A prototype of the system has been implemented on a Macintosh II using Object Lisp, an object-
oriented extension of Common Lisp. A graphical interface is provided in order to help the user to
define the physical model. The simulation results can also be monitored through the interface.

The system currently deals with problems in the heat transfer and fluid domains. The applicable
geometry is limited to two dimensional problems. As the discretisation method, only Finite
Element Method can be used. The knowledge-bases are currently developed for experimental
purposes and contain several typical algorithms and constants for each domain.

6 Conclusion

An Al based problem solving environment for numerical simulation of the problems described by
partial differential equations (PDEs) has been presented. Transformation between three abstract
models (physical, mathematical and numerical models) is realised using tailored knowledge-bases.
In order to build these knowledge-bases, the applicability of frame-based knowledge representation
has been investigated so that they reflect the hierarchical nature of the domain knowledge. Also the
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combination of localised rules and a global inference mechanism has been realised on the basis of
the object oriented paradigm.

Future developments will involve extensive expansion of the knowledge-bases and rules so that
the system will be able to deal with more complex coupled problems over irregular shaped regions.
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by
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Abstract

General purpose computer algebra (CA) system such as Reduce, Macsyma, SMP, Maple and Mathematica, have
been in widespread use in academia for more than a decade, and have found a wide range of applications. Many
of these systems have a sophisticated graphics interface, and contain encyclopedic databases of knowledge about
mathematical functions and techniques. Some systems allow the user to solve part of the problem symbolically, and
then generale FORTRAN code to evaluate the results efficiently. Other systems can be linked to object libraries of
numerical code such as the NAG library, to extend their range to include numerical techniques as well as symbolical
techniques.

But despite their widespread use and wide range of applicability, our observation of the users of all of these systems
is that they have proven 1o be very difficult to use. Rarely have we received the complaint that the sysiems were
not powerful enough, or incomplete. In many cases, the users of these systems were frustrated because they were
unaware of the proper command that they should use, or they were trying to solve their problem with brute force,
without applying any of the finesse that mathematics requires. But without a doubt, the biggest hurdle has been the
difficulty of leamming how to use these systems.

Perhaps one of the worst systems from a user’s point of view is Macsyma, the symbolic and algebraic manipulation
system developed at MIT during the 1970’s. Macsyma is a very large CA system written in Lisp, with over 1000
global variables and functions defined and documented. Macsyma was developed by many people over a ten year
period, and grew without the benefit of a coherent naming scheme for the functions and variables. But beyond these
specific problems of the program itself, some of the difficulty associated with using these systems arises from the
lack of semantic uniqueness in mathematics. For example, factoring an expression usually reduces it in size:

FACTOR(z® + 3z% + 322 + 1) — (z2+1)°

However, in some cases factoring an expression makes it bigger:

FACTOR(z® ~ 1) — (r=Wz+1)z?—z+1) 2> +z+1)

Thus the intuitive concept of “reducing” or making smaller does not always correspond (0 a unique mathematical
counterpart. Furthermore, the most straight forward approach from a mathematical point of view may be less than
optimal from a CA point of view. Often the former might be characterised as a “brute-force™ approach, lacking in
any kind of subtlety or optimization. Although provably correct, the mathematical approach may not be successful
on a CA system because of limitations of time or memory resources. This is especially critical in computer algebra,
because many of the exact algorithms grow exponentially or even factorially with increasing size. This internal
“expression swell” can be fatal to large brute-force computations.

In fact, the skills needed to operate an “expert system™ like Macsyma are in themselves a considerable body of
knowledge. One has to have good understanding of mathematics to know how to approach any non-trivial problem,
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as well as exiensive training on how to implement the chosen approach. Further consideration must also be given 10
selecting implementation strategies based on efficiency. Given the structured nature of this knowledge and expertise,
it suggests the idea of combining CA systems with rule-based expert systems in order to provide an intelligent guide
to aid in mathematical problem solving.

We have implemented an intelligent user interface for the symbolic algebra system Macsyma. The user interface is
intended for beginning to intermediate users who at present are often daunted by the wide range of commands and
capabilitics of a symbolic algebra system. The expert shell acts as a menu-driven user interface to the computer
algebra system, and organizes the vast mathematical range of a computer algebra system into a useable structure.
It performs source level optimizations in order to plan the most efficient solution strategy for the computer algebra
system. It has been integrated with a relational on-line help system, that is organized similar to a college algebra
text.

The system begins by asking the user a series of questions to try to define what operation in mathematics he or
she wishes to carry out. As the domain of the operation becomes increasingly specified, the knowledge tree is
descended instantiating the required sub-frames, and the questions become increasingly more specific. The system
analyses the expressions under consideration, and generates the Macsyma code needed to solve the problem. It then
communicates the code to a back-end Macsyma sub-process.

The system has been written using an Emycin rule-based expert system, and has been implemented in Common
Lisp and CLOS under X-Windows.
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Abstract

The paper presents the development of a research project based on a new methodological
approach to the design and implementation of a symbolic computation system for mathemat-
ical problem solving. The proposed symbolic computation system allows one to compute
by formal algebraic and analytical methods and to prove properties of the computation by
automated deduction mechanisms. The design and implementation is based on the object
oriented programming paradigm.

1. Introduction

The research and development in Symbolic Computation has brought to the design and imple-
mentation of software systems, such as DERIVE, MACSYMA, MAPLE, MATHEMATICA
and REDUCE, widely available since several years. These systems have been successfully
used in several application areas of sciences and engineering [Buc83, Cav86, Dav88, Mio90a,
Mio90b, Mio91,Yun80].

Unfortunately, those systems cannot always support the qualitative activity of mathe-
matical problem solving, where often the needs are for analysing the mathematical properties
of computed results.

Actually, even very simple computations, carried out by those systems, can produce
results which are not acceptable from a mathematical point of view. Let us present some

Research partially supported by MURST under the projects: “Calcolo Algebrico”,
“Metodi e struments per l’elaborazione non numerica”; and by CNR under the project:
“Sistemi Informatict e Calcolo Parallelo”.
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examples of these incorrect computations, with no reference to any specific symbolic com-
putation system. As a matter of fact, the problems we want to discuss are very general in
symbolic computation and they are mainly due to the design features of the software systems,
generally based on unsafe programming methodologies.

Example 1

(\/5)2 — I \/ﬁ—vz.

Example 2

Let y be l; Let z be -ilog:c; y—2z—0.
z dz

Example 3

Let y be z%; Z y — 11z°.
0<i<10

Exampie 4

Let y be Zz‘; — —5 0.
=1

Example

oo - 00 — 0; o0+ 00— 2 - 00; o0 0—0.

The examples 1 and 2 are incorrect from a mathematical point of view. The function (\/z)?
and the function v/z? are defined in two different domains. The same for the functions 1 and
j"; log z, even if they have the same analytical expression % A system simply designed on the
basis of syntactic rewriting rules usually cannot take into consideration any of the qualitative
mathematical attributes of a syntactic object. The examples 3 and 4 are wrong for completely
different reasons: the symbol i is used with different meanings in the two successive steps
of each example. The example 5 shows the obvious need for a precise algebra and therefore
for an adequate semantics to deal with infinity quantities.

More in general, the use of a system designed without appropriate semantics is a main
reason for the errors detected in all the examples presented above.
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Example 6
_ i+l
i ?
Z /z dr — Z ) —
~1<i<10 —1<i<10

In general, a message like “division by zero” occours with this computation. This example
again shows an inappropriate use of the symbol i, in the integrand z*, which is not correctly
bound to the constraint imposed in the sum expression. In order to avoid this situation, the
computation should proceed by interchanging the sum operator with the integral sign and then
dividing the sum into parts, as follows.

Z /xid:c—’/ Z ridz —

-1<i<10 -1<i<10
, z? R
— [(z7' + Z 2')dr — logz +z+ — +-- -+ —
. 2 11.
0<i<10
None of the existing symbolic computation systems is able to complete this computation, and
particular skill is required to the user to solve this problem.

2. Specification and manipulation of mathematical objects and methods.

On the basis of these considerations a research project has been proposed to identify a new
methodological approach to the design and implementation of symbolic computation sys-
tems. An symbolic computation system TASSO is under development to experiment with
the proposed methodology. The project deals with abstract entities as objects described by
axiomatic specifications. It considers logic formulas and algebraic structures. Each object
has a unique formal definition with the specification of its attributes and algebraic, analytical,
logic computation are possible under fixed constraints.
In particular, the project is mainly based on the following aspects:

- programming methodologies for abstract specifications;

axiomatic definitions of mathematical objects;

automated deduction mechanisms, as a new basic computing tool;

algebraic and heuristic methods for applied mathematics, at a high level of abstraction
with respect to the domains where the problems are defined.
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The specification of an object is given by following the typical object oriented mechanism of
inheritance, so as to reproduce the classical hierarchy of the mathematical abstract structures.
For instance, the abstract algebraic structure Ring is specified by assuming the specification
given for the structure Group, as in abstract algebra.

The dynamic definition and manipulation of mathematical objects is also possible: the
specification of an object (e.g. matrix, polynomial) is unique and the instantiation mechanism
allows one to compute with objects defined at run time (e.g. matrix over polynomials over
... matrices of integers).

Moreover, the specification of an object includes the specification of admissible com-
puting methods, given through an abstract definition at the highest possible level of the object
hierarchy. For instance, the Euclidean Algorithm it is specified as an attribute of the object
Euclidean Domain. Then the instantiation of the Euclidean Domain implies the instantiation
of all the related computing methods, (e.g. the Euclidean Algorithm).

From an application point of view both numerical and non-numerical computing methods
are needed in a software system for symbolic computation. Actually, the introduction of
numerical methods can be done consistently with the methodological approach of the entire
project, so as to offer the two types of computing methods in a single integrated computing
environment.

In order to develop such an integrated environment, one starts from the well known
similarity of numbers and polynomials, with their related arithmetic operations, and builds
very general abstract data structures to encapsulate various similar objects. At the same time,
the algebraic p-adic construction (Hensel method) and the classical numerical approxima-
tion method (Newton method) can be viewed as special cases of a more general algebraic
approximation method in abstract structures.

Then, the available specification mechanism allows one to exploit the main results on
the integration and the amalgamation of numerical and algebraic methods [Lim90, Lim91,
Mio88a, Mio90a, Mio90b]. The concept of amalgamation is borrowed from logic program-
ming and expresses the methodological approach to software development based on two levels
of operations specified with uniform semantics. The operations of the upper level control the
execution of the operations at the lower one. Actually, numerical computing can be inter-
preted as a lower level where the computations are completed under the control of symbolic
computing at the upper level, where the complete formalization of the entire computation is
given.

Furthermore the recent result on the possible unified interpretation of the Hensel con-
struction for algebraic equation solving and of the Buchberger method for the solution of
systems of polynomial equations, could support this definition of a general method for ab-
stract approximation construction [Mio88b).
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The inheritance mechanism in specifications is strictly related to the notion of subtyping, as any
derivation obtained by inheritance corresponds to a compatible assignement rule. Furthermore,
the subtyping relation is strictly connected to the functionalities available through the definition
in a class as export parameters. Then, subtyping is a more general relation than inheritance,
and it is possible to specify when a class can be assumed as subtype of another class [Par91].

The problem of automatic execution of specifications is also considered in the project. A
particular model is proposed for the specifications, as sorts, signatures and axioms which give
meaning to the function symbols. The verification of properties of given objects is obtained by
two different mechanisms: verification “a priori” and verification “a posteriori”. In the case
of “a priori” verification an editor oriented to the construction of the specification has been
proposed. Executable code is then derived from the edited specifications [Ant90a, Ant90b].
For the “a posteriori” verification, a completeness checker for the rewriting rules associated
with the specifications is available [Foc90].

The system TASSO includes two main modules: TASSO-L and TASSO-D. The TASSO-L is
the language, based on an object oriented approach, which allows the user to define objects, to
instantiate abstract structures into actual computing domains, and to compute with available
objects.

The TASSO-D is the module for automated deduction. It can be used both by the user
to check properties of given objects and by the system itself in order to generate and derive
new properties of given objects from properties already known.

3. The language TASSO-L.

On the basis of the characterization given for the specification process, the object oriented
programming paradicm has been recognized as the most natural. Actually, the object oriented
approach can be wel! characterized by the following equation

Object-Oriented = ADT + Inheritance

according to the literature (e.g. [Str87]). In fact, all the mathematical objects under consider-
ation, can be casily modelled by ADT. Furthermore, their implementation is encapsulated at a
hidden level respect to the user. Then, mathematical objects represented by ADT are viewed
as generic structures in which data, methods and attributes are specified and localized.

The available inheritance mechanism gives the possibility to specialize or extend ADT,
and the typical hierarchy of mathematical objects is made correspondent to the tree of the in-

143




herited structures, and it becames embedded into the system. Moreover, a correct cooperation
between abstraction and inheritance allows also to obtain parametric polymorphism.

Following this approach, the common properties of similar data structures are defined
at the highest possible level of abstraction and the methods to perform specific operations are
dynamically activated only upon the appropriate operands.

According to the original motivation of the research project, one of the most important
characteristics to be considered is the necessity to mantain a high degree of correctness of
the performed operations, also when dynamic data are defined: i.e. the flexibility of the
language respect to user’s needs must be balanced by preventing incorrect or ambiguous
types definitions. This fundamental objective can be obtained by a correct regulation of the
instantiation mechanism of the dynamic data. At the same time, the mechanism for strong
type checking, acting on all the defined objects, is the key to support the correctness of the
types and subtypes defined and used in all the different steps of the computation.

We have considered the most interesting, correct and flexible features of the existing object
oriented programming languages [Lim90]. We have also been experimenting with some of
them, namely Eiffel [Mey88], Smalltalk {Ing78], C++ (Str86] and Loglan {(Kre90].

On the basis of these experiments we have chosen Loglan for a prototype implementation,
also because it refers to the theory of Algorithmic Logic [Cio89, Mir87] as the main theoretical
framework where the specification and the correctness verification can be carried out.

The language allows the objects to be connected in a tree structure by a multi-level
prefixing, and the attributes of the objects are dynamically defined and redefined by virtual
specifications.

The inheritance mechanisms which have been selected are those of strict and multiple
inheritance. The strict inheritance allows relations of generalization, while the multiple in-
heritance allows one to derive properties of an object from those of more than one father,
obtaining a kind of aggregation. Those two mechanisms offer a good level of correctness
and flexibility, as described in [Reg90a, Reg90b, Reg9(c].

4. Automated deduction mechanisms.

The language TASSO-L incorporates automated deduction mechanisms of the module TASSO-
D. Those mechanisms can be activated directly by the user when he has to accomplish some
steps of deduction, and they are also automatically applied by the system itself as a tool to
guarantee the cormrectness of the objects definitions.

The mathematical object to be manipulated are specified by axioms in the first order
logic formalism. The problems of logic property manipulation can be classified according to
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different operational modes and to computing needs of users.

In particular, in some cases it is necessary to verify the validity of specified attributes
of an object or of a class of objects. This case is named verification mode. In same other
cases, properties can be generated from known properties already verified. This is the case of
generation mode. Furthermore, sometimes, it is necessary to abduct the premises from which
given valid properties can be generated. This is the case of abduction mode.

These various needs can be satisfied by a unique deduction method.

The TASSO-D module incorporates different deduction mechanisms. In the present version of
TASSO, object-oriented implementations of the Resolution with different kinds of Backtrack-
ing [Bon88], of the Connection Method [Bib87], [For90] and of a Sequent Calculus [Gal86],
[Bon90] are available.

These mechanisms offer a good degree of human orientation and in some cases their
applicability is increased by the interactive use. The user has the knowledge of his application
field, can modify the deduction path or stop it or, also, execute it under the control of a specific
ad-hoc strategy. Therefore the interaction is useful in this perspective.

The Connection Method is based on the possibility of representing w.ffs. as matrices
whose elements are (matrices of) atoms, and a validation of a formula is obtained by searching
a path of connections between columns of the matrix, which represent the clauses of a NDF
of the formula. Then, this method can be defined as an algorithmic mechanism operating
upon a single data structure which directly corresponds to the given formula.

Some remarks can be made on the characteristics of this deduction mechanism.

- The efficiency and the transparency of the method derive from the possibility of working,
during the entire deduction process, with the same unmodified matrix, created in the input
step. In particular it has to be stressed that any kind of preprocessing of the original
formula (e.g. to transform it in a normal form) can be avoided.

- This mechanism can be considered flexible because it is extendible to higher order
logics and also because the corresponding proof based on natural Gentzen calculus can
be automatically obtained from a proof based on this Connection Method.

- The Connection Method, using a single data structure, in which the formula is completely
encapsulated, is particularly suitable of an object-oriented implementation and in this
way the uniformity with the entire system can be maintained.

The extension of the deduction capabilities to include the Abduction Rule in the Resolution
approach (as proposed by [Kow83]) is known in the literature. Similarly the extension from
the verificative case to the causes for events case has been proposed for the Connection
Method (For89].

Furthermore the possibility of defining a single method to support different kinds of
deductions, namely verificative, generative and abductive, has been considered. To this pur-
pose, a Sequent Calculus has been defined. This method results to be intrinsecally suitable by
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being based on a set of rules easily defined and applied according to the different objectives.

The sequent mechanism has well known advatages: it is a natural deduction mechanism,
it can be used interactively and monitored by the user, and it is particularly flexible by allowing
one to transform the deduction rules according to the nature of the problems to be solved.

In [Bon89] e [Bon90] a sequent calculus has been proposed including the three deduction
modes, namely, verification, generation and abduction. Particular attention has been devoted
to the termination problem.

Starting from the Gallier’s proposal [GA86], the sequent calculus has been defined with
a set of rules for both the decomposition of a given formula into elementary atoms, and for
the composition of many sequents into a normal form. The propositional case represents
the kernel of the tool to be also used in the predicative case, following the object oriented
approach for its implementation. We have used some strategies in order to augment the
efficiency and to give some halting criteria to overcome the undecidibility of the general
problem.

S. Development and testing.

The starting point of this experimentation has been proposed by D. Wang stating a set of
interesting problems together with some solution strategies [Wan90). Those examples came
from different areas of applied mathematics, such as irrational expressions simplification,
stability of differential equations, linear algebra, limits, geometry reasonings and number
theory.

According to the original motivation for the project all these examples might be impos-
sible to be treated by the existing systems for the mathematical problem solving and can be
assumed as a good bed for the test of the system.

The development of the project has followed an incremental approach. Once a pre-
liminary version of the language and the deduction mechanisms has been made running we
started by defining some classes of elementary objects, such as integers, rationals, polynomi-
als, matrices.

During this developing phase the automated deduction mechanism available have been
widely used to check properties of objects, to generate properties of objects under definition,
to verify the correctness of the computing mechanism encapsulated into the objects.
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Abstract

In this paper we describe the design objectives and architecture of a development environ-
ment and methodology for building large scale computational models on paraliel machines and
its use for model/design prototyping. The aim of this system is to provide a machine inde-
pendent problem solving environment that automatically maps the underlying computation to
the specified targeting architecture, while it supports the endeavors of researchers. The system
currently supports the numerical simulation of field problems on general purpose sequential
machines, NCUBE and INTEL hypercubes, and Sequent shared memory parallel machines.
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1 Introduction

Parallel (//)ELLPACK is a research project, whose main interests are a) the construction of a
development environment and methodology for easily building parallel algorithms for the numerical
simulation of various physical objects, and b) a machine independent problem solving environment
(PSE) to support the prototyping (analysis, design) of physical objects. //ELLPACK system is a
realization of these objectives which is upward compatible with the well known ELLPACK system
(Rice 85]. Although the applicability of the system is extended beyond second order elliptic partial
differential equations (PDEs), we kept the same acronym for identification and historical reasons.
The current version of //ELLPACK supports the solution of nonlinear field problems [Weer 91)
on NCUBE, Intel hypercubes, and Sequent shared memory machines. Efforts are underway to
extend it to the CEDAR and GENESIS (an ESPRIT supported project) architectures. The system
consists of three main subsystems that support the specifications of a computational model. its
processing and the visualization of computed data. The development environment consists of a set
of powerful linear and distributed data structures, a set of interfaces among well defined processes
(called throughout modules or frameworks), and a number of tools supported by an appropriate
algorithmic infrastructure for the automation of certain preprocessing or postprocessing operations.
Figure 1 provides a view of the components of the system. It indicates the various components of
the system used to build a computational model.

The precise design objectives of //ELLPACK architecture are described in Section 2. The features
of the development environment and the intermediate language used for model/design specification
are presented in Section 3. Finally, in Section 4 we give a brief description of the various tools and
describe the editors that can be employed to compose the //ELLPACK program and specify its
parameters.

2 Design Objectives

Parallel ELLPACK is a programming and problem solving environment for the specification and
processing of PDEs on sequential and parallel machines. The main objective is to have a machine
independent environment that attempts to reduce and hide the overhead due to parallel processing,
while it supports the endeavors of a researcher. Another important aim of this system is to support
some form of modular programming or programming in the large, allowing the development of new
applications out of existing modules or frameworks. These modules or frameworks are characterized
by fixed interfaces which can be used to support intermodule or interframe communication. By
the term framework we mean generic processes (e.g., finite element or finite differences), which
can implement different techniques by providing only the definition of some primitive element (i.e.,
finite element or finite difference stencil). One fundamental piece of information in the specification
and simulation of physical objects is its geometry and topology. It is used to define a number of
other data structures needed for the simulation. It has been observed [Chri 89] that geometric
methods can be used to formulate new methods capable of exploiting the computational power of
some type of parallel machines. This is usually achieved by splitting the geometric data or mesh
data in some “optimal” way [Chri 90a}. So another design objective of parallel ELLPACK is for the
programming environment to support the geometry decomposition methods. Although ELLPACK
is an acronym associated with elliptic PDEs, the new system is evolving into one that supports
the processing of general PDEs or predefined computational models. The name is carried out for
historical and identification reasons. The ultimate objective of the parallel ELLPACK environment
is to support the electronic prototyping of physical objects. The conceptual view of an electronic
prototyping process for the design and analysis is shown in Figure 2. It consists of an initial design
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of the artifact, modeling the physical phenomena and an optimization facility, all interacting to
produce a constraint satisfying design. The new parallel ELLPACK PSE architecture is extended
to be able to accommodate the above process.

Model Prototyping

Design - Preprocessing Processing ost Processﬁ -

- Optimization

FIGURE 2: The electronic prototyping process.

3 Development Environment and Methodology

One of the objectives of //ELLPACK is to provide a programming environment for collecting,
combining and evolving well defined PDE and system modules. In order to support the development
of PDE based applications and solvers on sequential and parallel machines, one needs a set of
powerful data structures that can store the information needed or generated in the various phases
of the numerical simulation process. In the case of parallel processing some distributed form of these
data structures must be provided. To support programming in the large or modular programming
or the object oriented programming paradigm, we have extended the PDE oriented specification
language ELLPACK [Rice 85], [Para91]. These data structures and extensions are described below.

3.1 Data structures

It has been recognized [Finn 89] that geometric data structures play a fundamental role in any
electronic design system. In parallel ELLPACK these data structures are used not only to specify
the model geometry/topology, its attributes and meshes, but also to map the underlying compu-
tation to parallel machines. Figure 3 shows the relationship among these data structures. In this
architecture the geometric model data serve as the core data to which all other data is associated.
//ELLPACK provides a number of interactive tools for defining, displaying and manipulating these
data structures. For two dimensional regions a textual and graphical parametric representation of
the boundary is used. Figure 4 displays these two forms of model data. In three dimensions
we are exploring the use of various existing geometric modeling systems, including a nonmanifold
representation (Finn 89] and the PROTOSOLID approach {Vane 89].

We are developing two kernel models for the parallel implementation of finite differences and
finite element methods in MIMD architectures. They use the geometry and mesh decomposition
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data to generate and store, in distributed sparse data structures, the algebraic data that constitute
the computational model of the simulated objects. The geometry and mesh decomposition data
are a set of hierarchical data structures that completely define the subregions, substructures or
subdomains. together with the actual boundaries and interfaces to neighboring subdomains [Chri
89], [Chri 90], [Chri 90b]. The generation of this set of data is based on finite difference or finite
element discretizations of the geometry. The relationship between the algebraic and solution data
to the decomposed data is shown in Figure 5. Although //ELLPACK provides explicit support for
geometry decomposition or splitting methods, one can also formulate and implement purely matrix
partitioning techniques on the discrete distributed data.

Decomposed Geometric

Data
Algebraic
Mesh Data
or
Continuous
Solution Data

FIGURE 5: The relation between decomposed geometric data and algebraic data.

To support modular programming for ELLPACK [Rice 85] we have identified a number of
interfaces corresponding to some specific frameworks (discretization, indexing, solution, output).
The user can use these interfaces to develop other instances of such frameworks (or modules)
and easily integrate them. We are currently designing a tool which will allow the visualization of
algebraic data structures and interfaces. The //ELLPACK environment supports the automatic
generation of most of these data structures and its algorithmic/software infrastructure can be
extended easily. ELLPACK, and consequently //ELLPACK, has been designed not only to allow
model prototyping, but to support many research endeavors related to development of new PDE
solving software/algorithmic technologies.

3.2 Model specification and module-composition language

To support the specification of the PDE problem and the composition of PDE solving modules, we
use a PDE language whicli is an extension of ELLPACK language [Rice 85]. The parallel ELLPACK
language is upward compatible with the sequential ELLPACK and it will be implemented in C*.
It provides a single. machine independent PDE language capable of generating the control program
of a specified problem for a variety of machines. In the following, we describe these extensions
and indicate the ones that already have been implemented. To indicate the target machines its
characteristics and configuration, we added the machine segment and extended the definition of
other segments to indicate their execution with respect to the configuration (e.g., host or node) of
the paraliel machine. Some machines require that extensions (e.g., NCUBE 1). The ELLPACK
applicability is to be expanded to accommodate PDE problems that can be described by a set of
equations of the form
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Fus F(t,z,y,2,Diu, D;D;D;"u,/a D:D{D™ds) = 0
1]

where
= (u1,...,us)T and Fu = ((Fu),....(Fu)s)T

are defined in some region 2 C R* with boundary d€). Appropriate boundary/initial conditions are
specified on the boundary of Q. Currently, a subset of such PDEs can be accommodated by applying
automatically some symbolic preprocessing [Weer 91} and a mixed FORTRAN/ELLPACK code.
The ability of specifying two or more interactive models over subregions of § or interfacing regions is
addressed in the new language. Although the PDE specification of certain numerical simulations is
very common in applied mathematics, this is not true in certain engineering areas (e.g., structural
analysis). Instead, a predefined computational kernel (finite element code) is available and the
user chooses certain problem properties by selecting an appropriate element or a combination of
elements and thus specifies the physical attributes on the continuous or discrete geometric data.
We plan to interface such “foreign” systems with //ELLPACK and use its intermediate language
and man-machine interface described later to provide the input expected by these systems.

In case of single or multiple two dimensional regions we will adopt the same parametric rep-
resentation currently used, but we use tag variables associated with parts of the problem region
(interior, boundary, interfaces). These variables may be referenced later in the //ELLPACK pro-
gram. For three dimensional regions, the textual specification is in general impractical. We plan
to use the intermediate language of a high level CAM/CAD system to represent the 3-D region.

The automatic generation of grids and meshes is a necessary tool of any numerical simulation
system. We have recently added an automatic finite element mesh generator and created a new
segment to accommodate orthogonal or non-orthogonal meshes and to import or export mesh
data. The decomposition of “continuous” or “discrete” data and their use to formulate parallel
PDE solvers has proven to be a very effective way to speed up computations [Chri 90a). It is
unrealistic to expect users to manually generate optimally such decompositions (it is N P complete
problem), but, nevertheless, we provide a syntax for such textually specified data. Moreover.
//ELLPACK provides a higher level tool and automatic techniques for generating these data. The
decomposition segment also allows users to export or import compatible data. For the composition
and specification of PDE solvers, we use the ELLPACK segments. Finally, some new graphical
output facilities have been added that allow user to see computed solutions from various views.

4 Problem Solving Environment

We have developed a number of communicating tools to support the symbolic transformation of
PDE problems. These include the symbolic manipulation of input data, interactive graphical repre-
sentation of two and three dimensional geometric regions, the graphical display and modification of
meshes, the interactive definition or manipulation of domain decompositions, and the visualization
of performance and solution data. These tools are implemented by X-windows based “intelligent”
editors. These are described below along with examples of their user interfaces.

4.1 Processing subsystem

The //ELLPACK language described above allows the user to specify the input data in some “nat-
ural” form and explicitly state some of the computation/machine parameters. Often the problem
specification is the result of many symbolic operations. Furthermore, the original problem might
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not be handled directly (e.g., it is nonlinear) by the underlying PDE solving infrastructure and so
some derived information is required. Thus, we created a facility supported by an interactive editor
and interfaced with MAXIMA that provides the user an environment to specify a PDE problem
through a sequence of symbolic operations and transformations. Figure 6 depicts the user interface
of this facility which is referred throughout as the PDE specification editor.

We have seen that the geometric and topological data of a model play a critical role in the numerical
simulation process. The first step in the specification of some geometric object usually results in
some analytic representation of the geometry and topology of the region. We have developed two
X-window based interactive editors to support the design process of two and three dimensional
domains. Figure 4b illustrates the 2D geometry specification tool.

The display and manipulation of grid and meshes is an important functionality of any PDE solving
system. It allows one to adapt the numerical simulation to the behavior of the physical model. We
have developed tools for orthogonal grids/meshes and unstructured finite element meshes for two
and three dimensional meshes. Figures 7 and 8 display instances of the editor for two and three
dimensional meshes. The decomposition of continuous or discrete domains is a very challenging
problem from an algorithmic and implementation point of view. In //ELLPACK such decompo-
sitions play the role of steering mechanisms for the parallel processing of the computation. We
have built a facility for obtaining such decompositions automatically. The display and manual ma-
nipulations of such decompositions and their mapping is possible through appropriate interactive
editors. Figure 9 displays an instance of the domain decomposition editor.
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FIGURE 6: An instance of the PDE specification editor.
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FIGURE 7: An instance of the two dimensional finite element mesh editor.
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FIGURE 8: An instance of the three dimensional dinite element mesh editor.
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FIGURE 9: An instance of the domain decomposition editor.
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The appropriate selection of the grid or mesh size, its configuration and the choice of an efficient
PDE solver for the given PDE problem, requires significant knowledge and experience. ELLPACK
and its parallel extension provides a large library of PDE solvers. whose compatibility or effective-
ness must be determined or assessed by the user. This open-ended algorithmic infrastructure needs
the support of an “intelligent” front-end realized by an appropriate knowiedge base system. We

are building a such front-end for parallel ELLPACK. Figure 10 depicts an instance of its interface
[Hous 91].

4.2 Pre-processing subsystem

The numerical simulation of field problems [Vemu 8] on MIMD machines is currently supported
by a variety of solvers. Time-dependent, nonlinear and systems of PDEs are transformed auto-
matically by the PDE specification tool and MAXIMA to create a sequence of linear elliptic PDE
problems. For elliptic PDEs, we have developed a suite of finite element and difference paraliel
discretization modules. The solution of the corresponding algebraic systems are currently solved
with a parallel version of ITPACK [Hous 89} or a sparse matrix solver [Mu 90|, which we have
developed for message passing machines. The development of band matrix methods based on the
BLAS 2 and 3 is underway [Aboel 91]. One of the original design objectives of ELLPACK was
the automatic collection of performance data and their storage in a database. This functionality is
even more significant for //ELLPACK, since the amount of evaluation data is significantly larger

YOBR SPREIFIGATIONS [w J
|prostom crarnesertenes | l |
: [~ rmaen |
Aseureey
e l pm e [Ferermanes Preries |
[y ) [ @ =z

Haperts Sugpestion Windsw

FIGURE 10: The interface of the “intelligent™ front-end.
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for parallel solvers. We have built a facility in //ELLPACK that collects and stores many perfor-

mance indicators. Finally, an execution program tracing facility has been implemented that allows
the user to monitor program behavior.

4.3 Post-processing subsystems

The aim of this subsystem is to support the visualization of solution and performance data, generate
performance curves for various indicators and display them in a graphical form. The computed
solution and its derivatives can be graphically displayed and rotated by 3-D graphics (see Figure
11). For the display of 3-D PDE problem solutions, the NCSA XDS facility is used [NCSA 89).
Two editors have been developed for the visualization of the evaluation data and the results of the
analysis (Para 91], [Hous 91]. Instances of these editors are depicted in Figures 12 and 13.
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Folklore from the early days of our field has it that problem solvers, who employed numerical
approximation techniques, could regularly halt their computer in order to manually inspect the
progress of their program. Based upon what they saw, and knowing the layout of their program
in memory, the user could even alter a few parameters — say, step sizes or tolerances — in order
to adapt the algorithm’s behavior.

Since those early days, we have evolved higher-level programming languages, more powerful
computers, and better user interface software than ever before. But the level of dynamic control
that a user has over his program is still at the level of halting, selective ‘tweaking’ of values,
and resumption of execution. Only small-scale adaptations can be performed, since current
software technology requires the program structure to remain essentially the same. But what
if — dynamically — the user discovers that an alternate method altogether could take over
computation and perform better? Even though the intermediate program state might be easily
used by an alternate program component (e.g., integrators often use the same data structures
but vary only in the order they update grid elements), the user cannot change methods unless
he has explicitly designed this capability into his program right from the start.

Anticipating all possible alternatives that might arise in a long-running scientific computation is
infeasible, and the cost of terminating the computation in order to restart it can be prohibitive.
Ad hoc methods — such as inducing a core dump and manually transferring the core map to
another program unit — are not to be trusted. A technique for dynamically reconfiguring software
applications is needed, and, as we will show, several forms of reconfiguration are desirable for
scientific computing.

Based upon such motivation, a technology for developing reconfigurable programs is now emerg-
ing. The purpose of this paper is to describe these software mechanisms, and then to relate them
to potential applications in the scientific computing community.
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1 RECONFIGURATION TECHNOLOGY

Capabilities for controlling changes to an application’s implementation, even as it executes, are
increasingly in demand. Users of highly-available systems must perform maintenance in place
on software components; software developers may discover the need to transparently instrument
some application only after it has been functioning for some long time; and, ultimately, both
users and administrators alike may desire a facility for either relocating or reconfiguring a running
application in order to improve its performance.

Techniques for static control of application programs have been available for years under the
software engineering label configuration management. However, dynamic techniques, especially
those that can be employed in heterogeneous systems, have not been so generally available. To
date, loosely-coupled distributed applications have had the most success in dynamic alterations
to components. But to consider only applications of this type would be to overlook a wide range
of reconfiguration activities that may still be of great value to users. As described in [PuHo91],
software can be reconfigured in three general ways: geometric, topological, and implementational.

GEOMETRIC CHANGES. By the “geometry” of a program we refer to how it is mapped
onto the available computing system or systems. When the program is executed within a single
process, then typically there are few geometric decisions to make: one simply decides where the
process is to execute, and therefore the only form of geometric reconfiguration is to change where
that process executes. This is also called process migration, and while it is relatively straight
forward in homogeneous systems, heterogeneous process migration represents a serious challenge
to the software systems community. When the application is itself a parallel or distributed
program, then the user may choose to change where only some of the components execute. Thus,
whereas the local association of component interfaces remains fixed, the geometry may be altered
to reflect new demands, for purposes of load balancing, software fault tolerance, adaptation of
communication patterns, and finally migration of tasks in order to access resources only available
on other processors. Alternately, the user may choose to change the medium of communication
between executing processes.

TOPOLOGICAL CHANGES. Also referred to as “structural reconfiguration,” this form of
change to a program occurs when the interfaces between program components are rebound.
Whereas geometric reconfiguration maintains the logical association between components —
changing only where those components are executed — topological reconfiguration reflects the
fact that new components may be introduced, old modules may be removed, and the association
between the interfaces of any of these modules may change. For example, a user may choose to
introduce into the application a package for solving non-linear systems, replacing another system
solver, and then cause future calls to the solver to be directed to the new package.

IMPLEMENTATION CHANGES. In this case, individual components within the program may
change, even though the overall topology and geometry remaia the same. A user may request
changes in subroutines or functions in place, rather than reconfigure based upon addition and
deletion of other components, as was the case in topological reconfiguration. The primary distinc-
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lying host platforms. Libraries must be available to provide hooks into the communication
systems, some stub generation facility may be needed, and link editing tools must be able
to operate based upon designs expressed in the configuration language.

. The system requires a way to invoke the executables, and establish any communication

channels between components as are dictated by the design. Moreover, the system must
ensure that the only commurication between processes occurs over channels that are con-
trolled by the reconfiguration system. Should unanticipated communication channels be
overlooked during a geometric change, then system failure may result when a process sends
data to the “old address” of its correspondents.

. The communication system must support translation of primitive data representations, in

order to function in the presence of heterogeneity.

. The system needs a mechanism for controlling any of the three major forms of reconfig-

uration, which may of course include preemptive control over some processes within the
configuration.

Our approach to meeting these requirements is to organize applications in terms of software
bus abstractions, where the communication substrate is extended to support certain primitive
operations necessary to effect the desired reconfiguration steps. Previously, we have reported
on the basic ‘toolbus features’, along with our experimental notations [PuJa90, Purt90]. More
recently, we have begun using those notations as a base for dynamic reconfiguration research
(PuHo91]. For scientific computing environments, a key operation is the state capture primitive,
as will be described. First, however, we summarize the general characteristics of software bus
organization that make it suitable for use in reconfiguration research, leaving details to the
previous papers on this topic:

1. Our current implementation of a bus-based system, called Polylith, provides a module

interconnection language (MIL) for users to express their designs. This MIL is not tied to
any particular programming language, but rather is intended to provide a uniform basis for
integrating components from many different language domains.

. Polylith provides a variety of packaging tools to assist users in preparing their programs to

execute in this environment. The general philosophy is one of accommodating the needs
of existing languages and systems, not prescribing a standard to which existing languages
and programs must conform.

. As a software bus system, Polylith already provides a mechanism for invoking processes

and then establishing communication channels between them via the underlying hosts. As
such, it already provides many of the facilities needed to experiment with ways to later
change the established configurations.

4. As discussed in [Purt91)], one of the primary features of a software bus system is that it

provides a way to integrate programs having very different data representation properties.
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Parameters and data references will have their representation coerced during transmission
through the communication substrate, all transparent to the programmer of the individ-
ual components. Therefore, it is natural to consider building upon this resource when
attempting to find ways to change a configuration within a heterogeneous environment.

Since all communication in software bus systems is centralized (logically, though perhaps not
physically) within the bus substrate, this provides us with a ready data structure to examine
should we seek to subsequently change the configuration at run-time. This is precisely the
approach we take in this research, where the current bus specification — that encapsulates
communication and interconnection decisions — is extended to also provide promises concerning
how a configuration can be changed during the course of the application’s life.

In the basic Polylith system, packaging tools are free to access other components through the com-
munication system via such straight-forward accessors as read’s and write’s (in effect, a message
passing system). With our extensions, the programmer is also able to access the communication
system (bus) in order to determine the current configuration; this information is returned in a
suitable data structure. Once available to a process, this configuration data structure can be
edited (through appropriate calls) in order to describe how the new configuration is to look. The
revised data structure can be passed back to the bus via another system call, at which point a
sequence of low-level reconfiguration operations will be invoked in order to install the new con-
figuration from the old. These system calls are complemented by availability of suitable locking
mechanisms so that the process can prevent changes to the system state that might invalidate
its own econfiguration actions.

The details of these system calls, and examples of what they look like, are left to other papers
— what is essential here is that in general the application programmer needs only to focus on
correct implementation of each component’s functionality, and then on the configuration itself,
expressed in the Polylith MIL. In the case that implementation changes are anticipated, then
the programmer is also asked to write a function that will, when called, expose the internal
component state information, so that it can be transmitted to a replacement component. Polylith
is responsible for all other packaging, compiling and linking obligations.

This does make the point, however, that some components are built to focus only on the ap-
plication requirements, and others are built to ‘know’ they are functioning within a bus-based
environment may therefore direct some reconfiguration steps. We refer to this as an ezternal ap-
proach, in that you have one program unit operating on the configuration of another at run-time.
This is as opposed to an internal approach, where an application is responsible for managing
its own configuration. Clearly, the former can be used to implement the latter. However, since
the reverse is not necessarily true, then we have chosen an external approach for its flexibility.
Currently, we centralize the responsibility for reconfiguration within tools specially built for the
job, such as the Minion editor [Purt89].

STATE-CAPTURE OPERATIONS. The most difficult reconfiguration activity to organize is
that of module implementation, where state information necessary to the correct functioning of a
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replacement process is cached in the old version of the process. Simple copying of data segments
may be insufficient for this activity, as with today’s compilers and code generators there is no well-
defined, application-independent way for the data elements to be identified or related. Moreover,
the presence of heterogeneity in underlying platforms requires that the data be abstracted during
extraction, so that its’ representation can be coerced according to the appropriate data type
rules.

Abstractly, our state-capture mechanism loosely follows a standard method for transmitting
instances of abstract data types (ADTs) in a network [HeLi82). In this method, representation
maps for the type are developed and added to the type’s signature. When called, one map returns
an externalized data structure suitable for use within the communication subsystem; the other
accepts an externalized structure and establishes an appropriate internal representation.

We have found that this approach can be extended so that processes can be treated as instances
of an appropriately chosen ADT. In one scenario, the process can itself choose to divulge its
state information through a representation map (installed either by automatic techniques, or
by the designer); once divulged, the state can be relocated by the communication subsystem,
then used by the inverse representation map to parameterize the invocation of any other valid
implementation of that same ADT (that is, another copy of the program can start up where the
previous process left off.)

Another scenario presents a more difficult situation, in that often the decision to reconfigure is
made external to the component. In this case, steps must be taken to also capture the control
state of the process. Unlike ordinary data types, a ‘process’ ADT also has a thread of control
associated with it, and this may result in changes to the data state that are not anticipated by
the agent invoking the representation map. In short, the data may not be in a ‘safe’ or consistent
state when accessed. Hence, the software organization must ensure that appropriate locking is
done on data elements, and moreover that an image of the control state is made available to the
new process.

Schemes for ensuring consistent state for reconfiguration can be expensive, and in general, one of
our other research objectives is to determine for which classes of programs we may automatically
determine reconfiguration maps that are inexpensive to use. However, currently we rely upon
the designer to assist in identifying and installing the maps for their application so they may be
accessed by our environment during a reconfiguration step {PuHo91].

The representation map can be as simple as a function that, when called, simply returns the
values of global variables that are desirable to be passed to any new implementation of this pro-
gram. Implicitly this scheme allows reconfiguration to occur at any time, without locking, and is
sufficient when the computation can proceed reliably even when those data are in an intermedi-
ate state. For example, say the operation being updated is an PDE system solver; here the data
primarily consists of the grid data values. Many techniques will still converge to a satisfactory
solution if the reconfiguration occurs mid-iteration, leaving only part of the grid updated from
the last step. Another example is suggested to us in [GoRa91], where reconfiguration of signal
processing applications is discussed. In this case, the system may reasonably drop some interme-
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diate samplings or values during the reconfiguration step, and still provide satisfactory service
upon resumption of normal communication.

The above scheme is most desirable from a performance point of view, since it entails no run-
time costs until the actual reconfiguration step is initiated. However, it is not always feasible. In
another scenario, the designer may be forced to determine windows during which reconfiguration
is safe to proceed, hence locking out reconfiguration during updates of some data values. Coor-
dinating the safe states via the underlying host operating systems (from which reconfiguration
requests would be issued) can incur some run-time costs; this is of course undesirable for scientific
computing applications. The most undesirable manifestation of this scenario occurs when suit-
able synchronization between the process and the operating system is not feasible. In this case,
the designer may be forced to checkpoint the process state at regular intervals against the pos-
sibility of a future reconfiguration step. Checkpointing, of course, incurs costs that are generally
unacceptable for scientific computing. A taxonomy of approaches available to designers, along
with the corresponding costs to be paid, is being prepared for an extended version of [PuHo91].

2 EXPLOITING RECONFIGURATION

The previous section surveyed possible types of dynamic reconfiguration, and also described a
workbench we are building to experiment with software reconfiguration. We now summarize
how this facility specifically benefits scientific computing activities. The scenarios below are
either possible within our framework, or have in fact already been experimented with to varying
degrees within our laboratory. In each case, however, the description is of work in progress,
and we anticipate producing detailed reports on each of these efforts as the projects evolve.
These reports will include manuals for use, since our goal is to widely distribute the software
infrastructure in order to solicit feedback from the community.

In scientific computing environments, the goal is to place powerful tools at the disposal of problem
solvers. In the current generation of mathematical support tools (such as Maple, Macsyma or
Matlab), only single “monolithic” programs are employed — the user only interacts with the
one tool. Should other resources be required to solve the problem, then a serious question of
representation and interconnection arises. Current systems do not easily interoperate with other
tools, even though conceptually the user could benefit from such leverage.

To combat this interconnection problem that increases with the scale of a problem (as measured
either in terms of the number of mathematical objects to be managed or in the number of
subproblems the user must coordinate), we have previously described the potential benefits of
tools supporting “problem solving in the large” [Purt89]. In this work, a separate user interface is
provided to help the user coordinate — and, most of all, manage — diverse sub-problem solving
steps. A principle feature of this work is that it shows how to use languages for expressing problem
solving “plans” to such a support system. Since a user may not easily predict what tools may be
required to solve problem (that is, it is often difficult to plan so far ahead into a task), the system
we developed to experiment with these ideas provided some aspects of dynamic reconfiguration.
Specifically, this system (called Minion), allowed dynamic introduction of new tools, along with
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rebinding of interfaces between these tools. These are topological reconfigurations only.

But a user may choose to replace a particular tool during an interactive session, and moreover
there may be valuable data within the old tool that must be transmitted to the new implemen-
tation, i.e., geometric change may be desirable as well. One example of this that has arisen
is in a large scale problem solving plan where the user has a computer algebra tool configured
in one of the nodes. This too! was relied upon for its symbolic integration capability, and the
session proceeded. At one point, however, the user was curious concerning a particular result,
and decided to change integrators in order to compare some values later in the computation. As
configured now in Minion, the user needed only to identify the necessary “state” variables from
the computation; transmit those data on the reconfiguration interface; and finally request, via
the graphics editor in our system, invocation of the replacement algebra tool. (The state data
would be supplied to the new tool automatically.) In this case, state variables consisted of certain
constant values and dependency rules.

At this time, we use the Minion editor as the mechanism by which reconfiguration directions
are related from the user to a running application. In the case that state representation maps
can be established within the program without need of checkpointing, then the application can
execute without any loss of performance as compared to how it would execute outside of the
reconfiguration system’s framework.

The computer algebra scenario described earlier also has a numerical counterpart. Even as many
numerical approximation techniques feature ‘adaptive’ steps, to adjust the solution approach to
conditions of the particular problem, our approach to reconfiguration provides a radical extension
to the concept of adaptation. The entire method can be changed. For example, a general ODE
integrator may initially be employed upon a problem for which little ‘context’ information is
available to guide in the choice of special techniques. During execution, either the program
itself or an observer may recognize properties that could be exploited (e.g., stiffness, oscillatory
behavior for which there are special methods, or discontinuities for which certain heuristics might
yield results).

Our experience in this area has been that the key difficulty in this change is adapting the rep-
resentation. In so many of these numerical activities, the method is tightly coupled -with a
particular representation scheme, and therefore a change in method requires possibly significant
alteration in the data space as well. Moreover, it is unlikely that the data’s old and new forms
will correspond directly, requiring some conditioning. Participation from the user is essential in
this activity, though we can report that once the user has found a way to describe an internal
structure ‘abstractly’ in our system, subsequent reconfigurations involving that program are in a
position to benefit immediately. However, because the adaptation of data can involve a poten-
tially substantial amount of computation, it is becoming clear to us that dynamic reconfiguration
is not something that is likely to ever be suitable for frequent, fine-grain use. This seems to be
directly analogous to the situation in process migration systems, where the benefit of geometric
change rarely seems to outweigh the cost of effecting that change frequently.

Other ways to exploit our system are now easy to envision. Once the user has expressed an
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application in terms of our configuration notation, then there is a basis for introducing instru-
mentation programs into the code as it executes. For example, a numerical integrator could be
set up to assume success in taking steps — dynamically a user could introduce the ‘hooks’ so
that intermediate results are temporarily diverted to a system solver to check the progress of the
solution. This capability would have comparable benefits to application debuggers. More impor-
tantly, however, is the way in which this capability opens up a new way to interface front-end
workstations to remote supercomputers. The benefits of interactively developing and experiment-
ing with mathematical programs on a personal machine are well accepted. But after trying a
few ‘easy’ tests on the workstation, users regularly discover that a simple change in the test data
can result in an entirely different order of magnitude in complexity of the computation needed
to solve the problem. With existing systems, this requires that the user wait until patience is
exhausted, then terminate the program, port it to the high-end machine, and begin it again. But
in our system, a simple graphics command could relocate the process to the supercomputer for
faster execution ~ in short, the user would only relocate tasks to other machines only as needed,
and without extensive interruption to the problem solving train of thought.

3 CONCLUSION

We have described a general framework for dynamic software reconfiguration, focusing on the
broad objectives and motivating our solution approach. A workbench for experimenting with
reconfiguration is being developed, and we have described how this is being used for preliminary
application within scientific computing. Much research remains to be done, both in the general
framework and in its specific use within scientific computing environments. The key remaining
questions are to more precisely quantify the cost of each form of change, and also to determine
the classes of programs for which a representation map can be calculated by automatic analysis.
However, the direction is promising, and we will continue our efforts to bring this emerging
software technology into the scientific computing arena.
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1. Introduction

Past problem solvers for PDEs (Partial Differential Equations) have been developed and used under the batch or
time-sharing environment using the host computer and CRT terminals (cf. [1]-[3], [5]). They generally take the
form of high level programming languages with code generators, or sophisticated driver for subroutine libraries.
And some of them exploit the high performance of supercomputer architecture. The present PDEQSOL (Partial
Differential Equation Solver) is one of these solvers, which possesses both finite difference method (FDM) and finite
element method (FEM) as automatic discretization facilities. It has been applied 1o real-world complex problems

(cf. [6]-(8D).

The advent of high performance graphical workstation of recent years enables these solvers to step up to the next
stage from programming languages (cf. [4], [10]). We have been also trying to extend current PDEQSOL to be
workable on the high performance graphic workstation which is connected to the supercomputer. We named this new
system *“visual PDEQSOL". The objectives of visual PDEQSOL is to improve man-machine interface of PDEQSOL
drastically and to support the total simulation procedure in consistent manner under the graphic environment (cf.
[9]). We have just implemented the initial version of the prototype system.

In this paper, the overview of visual PDEQSOL, its man-machine interface and characteristic functions such as
guidance for expansion of PDEs to numerical aigorithms are explained using the implemented window examples.

2. Outline of Visual PDEQSOL

The aim of visual PDEQSOL is to realize the continuous and consistent support of total simulation process consisting
of modeling, execution and result analysis through the visual and intelligent interface.

2.1 The system structure

The developed system structure of the visual PDEQSOL is shown in Fig. 1. It consists of five subsystems, where
the present PDEQSOL acts just as the code generator subsystem. Other subsystems are as follows.

The model visualizer supports the interactive modeling process, by which users can input physical domain and PDEs
directly into the windows.

The PDEQSOL debugger and the run-time diagnosis subsystem is a high-level execution debugger with visual
interface, by which users can break into the simulation program and collect information such as values of variables
and matrix to diagnose the meshing scheme and numerical algorithms. The result analyzer is a checking tool for
numerical accuracy and error of the calculated result, using graphing function for numerical variables.

These subsysiems are developed on the UNIX based standard platform, that is X-window system and OSF/Motif,
so that the high pontability of the system is realized and the appearance and behavior of interactive windows are
standardized.
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2.2 Man-machine interface

The interactive control panel of the visual PDEQSOL is shown in Fig. 2. Each button on the panel stands for
information which constitutes simulation model and processes. Users can interact with system and input or get
information of simulation model through these buttons.

The buttons are classified into three groups defined in the top-down manner. The first one is the physical model which
expresses physical information of simulation model, such as physical shape (Draw Model), variables, dominating
equations (PDE), boundary and initial conditions (B. Cond, 1. Cond) and so on. The second one is the mathematical
model which expresses mathematical information to carry out numerical simulation, such as meshing scheme for
domain (Mesh), numerical algorithm (Algorithm), and so on. The third one is numerical model which expresses
numerical operation and information, such as the execution of computation (Execution) and execution process (Exec.
Log), calculated numerical result (Num. Result) and so on.

When a user pushes a button, the subwindows and input guidance templates appear, by which the user can confirm
or refer o pre-defined information and add new information. For example, when the Draw Model button is pushed,
then the subwindow for physical region and menus for defining new region appears, as shown in Fig. 3. Or, when
the button is pushed, then the subwindow for dominating equation and the template for inpuiting new equation
appear. The latter subwindow includes scroll bar of pre-defined variables and usable operators, as shown in Fig. 4.

3. The Characteristic Functions of the Model Visualizer

In this section, the functions of the model visualizer is described, because the model visualizer is one of the most
characteristic parts of this system.

Model visualizer has the specific functions which guide users 1o build simulation model quickly and correctly
referring to numerical analysis knowledge. In this section, two examples of them, that is the guidance for inputting
boundary conditions and the guidance for constructing numerical algorithms, are explained.

3.1 Guidance for inputting suitable boundary conditions

This system guides users to input suitable and sufficient boundary conditions for each boundary region according
to the nature of PDEs. This system extracts the suitable form of boundary conditions for each boundary parts from
the PDEs information and the draw model, and guides the user to select and complete boundary conditions. The
guidance proceeds in the following manner.

The system extracts the boundary parts of the region where the PDEs are defined. For two dimensional case, sides
which belong to only one face are extracied.

The system decides the form of the suitable boundary condition for each part according to the PDEs information
and the kind of condition. For the Neumann boundary condition, the flux terms of the PDEs are extracted as the left
hand side of the condition equation. For the Dirichlet boundary condition, the target variable to give the condition
is automatically decided for each equation. To decide the appropriate target variable is not a trivial mater for
simultaneous PDEs.

The system displays the template showing the above information. Only a user has o do is to select the kind of
conditions and input the right hand side of the condition equation for every selected boundary part.

An example of this guidance is shown in Fig. 5. At first, a user selects the objective equations on the BCOND
template. Then, the left hand side of the boundary condition appears for both kinds of condition , and for each
boundary part selected by the sysiem. After the user selects the kind of condition and inputs the right hand side of
the condition, the completed condition equation is displayed on the specified boundary part and the user can visually
confirm it.

3.2 Guidance for expansion of PDEs to numerical algorithm

Users can input PDEs with time-dependency, simultaneity and non-linearity. The system guides users to construct
numerical algorithms according to the characteristics of the PDEs. The guidance proceeds in the following manner.
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The sysiem automatically determines the characteristics of the inputed PDEs by parsing and checking the terms in
the equations.

The system inquires users how to treat these characteristics. Inquiry is in the order of time-dependency, simultaneity
and, non-linearity. In this inquiry, the latter choice is depends on and narrowed by the former choice. If there
remains no latter choice, it is automatically skipped. So users can decide the algorithm with minimum choices. The
choices are implicit method or explicit method for time-dependency, lumped method (cf. {7]) or successive method
for simultaneity, and Newton-Raphson method or successive method for non-linearity.

Finally, if the matrix solution is needed according to the choices, the repertoire of solution is shown for user’s
choice.

The example of this guidance flow is shown in Fig. 6. The objective equation is a non-linear convection-diffusion
equation, If the explicit method is chosen for time-dependency, there remains no choice for non-linearity. Thus no
further guidance is done. In the case shown in Fig. 6, the implicit method is chosen for it. Then, the guidance
template is prolonged and the menu of choice for non-linearity appears.

The algorithm expansion is realized from these choices as follows. Expansion also proceeds in the order of time-
dependency, simultaneity, and non-linearity.

New variables needed to constitute the indicated algorithm are added. For example, the variables to store temporary
value for time iteration, non-linear iteration and so on are added.

Equations are expanded according to the choice of method. The equations are broken into plural statements consisting
of loop control statements, assignment statements, SOLVE statements (cf. {6], {8]) and so on.

Finally, given initial conditions and boundary conditions are modified to adapt to the above expansions.

The example of algorithm expansion is shown in Fig. 7. The statements expanded from the original equation appear
in the scheme subwindow.

The mechanism of this expansion is shown in Fig. 8. This explains the expansion process for time dependency
and non-linearity. In each step, new variables are added, and conditions are modified and equations are expanded
according to the indicated choice of numerical algorithms. For the expansion of time-dependency, the original
equation is expanded 10 statements (A), because the backward-Euler method is chosen. New variable DT is added
and initial condition is modified. For the expansion of non-linearity, the equation in the obtained statement is
expanded to statemenis (B), because the newton-raphson method is selected. New variable DN is added and
boundary conditions are aiso expanded.

4. Concluding Remarks

We have designed visual man-machine interface for general PDE problems, and have developed the sysiem which
assists a user through total simulation procedure. This system has the following remarkable features.

o The original problem can be inputed directly into the windows.

o The system guide users to construct simulation mode! using numerical analysis knowledge.

o The system has high portability.

e The amnearance and behavior of interactive windows are standardized. From our evaluation, the total simulation
procedures are shortened to 1/10 to 1/30 compared to the conventional environment using FORTRAN.
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SR

VARIABLE D;
EQUATION  DT(D)=DIV((K1+K2#D)=*GRAD(D))+Q;

ALGORITHM SOLVE D OF DT(D)=DIV((K1+K2+D}*GRAD (D)) + Q; @
BCOND N.. ((K1+E2#D)*GRAD(D) )=0 AT WALL,
D=A AT GRAND,
ICOND D=B ;
i)
! Expansion of time dependency
{ g
VARIABLE D, DT; ' ()
ALGORITHM ITER NT UNTIL (NT GE 100); E
SOLVE D OF (D-DT)/DLT=DIV((K1+K2+D)=*GRAD(D)) + Q; ! ®
DT=D; !
END ITER; !
BCOND N.. ((K1+K2+D) *GRAD(D) )=0 AT WALL,
D=A AT GRAND,
ICOND DT=B .
1
{ Expansion of non-linearity
!
VARIABLE D, DT, DN:
ALGORITHM ITER NT UNTIL (NT GE 100); (B)

ITER NN UNTIL (NN GT 1000) OR (NDN LE eps);
SOLVE DN OF (D+DN-DT)/DLT=DIV({K1+K2*D+K2*DN) *GRAD (D)) +
DIV((K1+K2«D) *GRAD(D) + Q
BY ' ILUBCG ;
D=D+DN;
CALL NORM2(NDN, DN);
END ITER;
DT=D;
END ITER;
BCOND N.. ((K1+K2«D+K2#DN) *GRAD(D) ) +N. . ((K1+K2+D)*GRAD (DN) )=0 AT WALL,

DN=A-D AT _GRAND,

Fig.8 Example of Algorithm Expansion
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DISPLAY OF FUNCTIONS OF THREE SPACE VARIABLES AND
TIME USING SHADED POLYGONS AND SOUND-

W. M. COUGHRAN. JR.' AND ERIC GROSSE?t

Abstract. This talk will describe the visualization tools used in our scientific computing group
to look at data and functions in two and three space variables. Emphasis s given to aspects that
differ from the prevailing style elsewhere, and the points made will be illustrated with a videotape
of representative example of the tools in use.

Aside from a few inherently interactive tools such as brushing scatterplots and choosing view-
points. we emphasize images recorded frame-at-a-time onto videotape. Sound works effectively for
presenting scalar information in sync with field displays. for adding tick marks on the time axis. and
for more subtle stretched data displays.

1. tensor/scatter tools. We have been involved in the construction of algo-
rithms and software for simulating complex physical systems for many years. As
simulations in two and three (or more) spatial dimensions and time become more
cominonplace. manipulating and understanding the results have become important
aspects of the overall scientific-computing problem.

It is necessary to switch from a subroutine library mentality to making use of
self-descriptive file formats when large simulation tools (run on specialized computer
hardware) are involved. We introduced such file formats for tensor-product and scat-
tered data elsewhere{5]: unlike specialized binary formats. our approach uses simple
ascil files that can be processed using an AWK-like paradigm{1]. In cases where speed
of input/output becomes a serious issue. we accelerate the ascn file using {10]. Such
an approach has allowed us to build a family of simple tools that can be applied in
numerous combinations using standard UNIX™ pipes.

We provide tools to: compute the domain and range of the data; scale data: gen-
erate variation-diminishing and least-squares splines in multiple dimensions: provide
ubiquitous function plots: generate orthographic and perspective color-level plots:
compute sounds suitable for inclusion in scientific videos to demark time and some
other scalar parameters. In later sections of this paper. we describe in more detail
some of the other tools that we have found valuable. We have found that building
small tools has made it possible to move from one hardware platform to another with
minimal effort.

2. Slice and dice. One of the more innovative aspects of our function displays
is the dashed surface. The scattered data smoothing program loess{3. 9. 4] produces
not only a data model but also an estimate of standard error at each point. The
obvious generalization of error bars would be transparent offset surfaces. but this gets
rather cluttered. Instead, dice the surface into patches that get trimmed as the error
increases. This is analogous to a univariate function plot in which the function curve
is dashed in areas of uncertainty. The technique is straightforward to implement.
though one needs to be sure to scale the trimming so that patch area. not diameter.
is proportional to standard error.

So far, the tools described have mostly been applicable to functions of two space
variables. Animation is used for a third variable, such as time in a simulation of tran-
sient phenomena, smoothing parameter in data analysis, or continuation parameter
in a stability study.

I Typeset on July 31, 1991.
' AT&T Bell Laboratories, Murray Hill NJ 07974 USA. vmc or ehglresearch.att.com.
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Fic 1. Continuation example, illustrating icons on transparent i1sosurface. with notched cube
and color contours as reference frame.

For functions of three space variables. our goal is to emulate the outstanding
pictures one finds in a good anatomy text. First we want to cut away parts of the three-
dimensional domain. not just with a single cutting plane but making a rectangular
notch. sometimes stopping the cut along a curved internal surface. Sometimes this
means a blood vessel or the like is left intact in the excavated region. Second. color
and surface texture increase contrast on the internal surfaces thus revealed. Finallv.
distinctive objects (icons) are inserted to poiut out important features.

So far we have taken oniy the first steps toward this goal. In one VLSI simulation
we were recently involved with, the operating envelope of a device was to be computed
by holding one voltage fixed. varving a second by an ordinary continuation procedure.
and searching for a turning peint. Then we varied the second voltage and traced out
turning points in the first voltage using predictor-corrector continuation applied to an
augmented nonlinear system. As Rheinboldt has analyzed in detail{15]. this amounts
to tracing a curve on a certain manifold and we have gotten some insight into the
behavior of the continuation procedure by displaying this manifold.

A segment in the videotape shows a continuation example of this kind: a still from
this is (inadequately) shown in Figure 1. We start with a scalar function of three
variables. Although we plan to borrow a BSP-tree program{13]. sculpt. to specify
arbitrary slicing. for now we make do with a simple notched cube. and display by
color bands the values of the function on the visible faces. This gives an overall
impression of the function to the trained eye. and provides a frame of reference for
the isosurface. which is the equilibrium manifold for this continuation problem. and
the key item of interest.

Successive turning points found in the numerical continuation are marked by small
cubes. The surface is slightly transparent so that the continuation path can be at least
roughly seen from any angle. (This presents a technical difficulty, because the z-buffer
algorithms used for hidden surface elimination do not properly deal with transparent
surfaces in general. In this particular use, we can arrange to compute the pieces of the
isosurface in back to front order and sidestep the difficulty.) Both the isosurface and
the cubes are given a non-spectral color to contrast with the background. Even so. a
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proper vantage point is esseutial for a clear view of the action. Sou iu the animation
we pick a camera position using the surface normal at the continuation point just
computed. thus encoding some curvature information iu the camera sweep.

At present we compute the isosurface by the customary linear interpolation. By
adding surface normals at polygon vertices. obtained from a trivariate quadratic varia-
tion diminishing tensor spline approximation. visible artifacts are much reduced. This
gives a smooth appearance without the need for a very fine grid. However. it does not
get around the fundamental limitations of linear interpolation near singular points.
We have successfully used Rockwood’s program(16] on an experimental basis. but
need to adapt it to generate patches instead of points before we can use it routinely.

3. Sound and color. Yet more information can be conveved in this animation
of the continuation process by using the sound track. In our example. we used a
snare drum to indicate each Newton step. and a bass drum to indicate a converged
turning point. Upon playing the videotape. we noticed for the first time by hearing
an abrupt change in the sound track that the convergence got into trouble just as the
continuation switched variable 1 to variable 2. Examination of the detailed numerical
output confirmed this. giving us a valuable pointer of where to direct further numerical
efforts.

In other animations of simulation results. by listening to the sound track we have
discovered restarts in the differential equation solver that had earlier gone unnoticed.
This was caused by a phenomenou related to stretching the r axis in line drawing
graphics.  Sometimes small features that can’'t be seen when the entire dataset is
displayed at once become apparent when the scale is stretched and only a small
segient of the dataset is displaved at a time.

Even when sound does not lead to a discovery in the data as dramatic ax this. it
can serve a useful role as a tick mark for the time axis. This could alternatively be
achieved by printing the time or. better, drawing a clock face. in the corner of the
screen. Sound has the advantage that the viewer's eve is not drawn away from the
main action. Animations go by rather quickly until one has viewed them many times.
so this advantage of sound (like the head-up display in aircraft) can be valuable.

For further discussion of synchronizing sound and video. see [6]. That paper also
describes a numerical procedure for automatically choosing colors for contour bands.
Nonlinear least squares applied to psychophysical metrics can eliminate a manual task
that is otherwise tedious and arbitrary. For preliminary efforts to correct loudness
similarly. see [7].

With all the fascination of elegant renderings and snazzy sound. it is easy to lose
sight of the fact that simple line drawings are still the most important graphical tool
we have. Probably 80% of our displays come from a tiny library of function and data
plotting routines{l11]. These generate files in an equally tiny language that can be
trivially converted to PostScript. pic. or whatever other graphics is locally available.
For dependency graphs and other such figures, some useful tools are MetaPost{12] and
dag(8]. PC-based drawing programs are also attractive. but do not lend themseives
to data-assisted creation and updating.

One line drawing that deserves wider use is brushing scatterplots[2]. This tech-
nique for displaying sets of multivariate data points presents a matrix of all pairwise
scatterplots and allows the mouse to paint points in one plot while simultaneously
highlighting the corresponding points in other views. By this means, a number of
patterns and outliers can be quickly identified.
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4. Hardware-related choices. Not so long ago. graphics applications tended
to be tied to specific hardware. The reason was not lack of standards in calling
sequences and file formats. but rather in fundamental differences of hardware archi-
tecture and the need to squeeze the last ounce of performance out of a system in
order to get acceptable speed. On one system. color-band contour plots would be
produced by operating on the color lookup tables: on another system. using a texture
map proved more effective. Fortunately. the situation has changed and we are now
blessed with comparable functionality in all the high-end graphics devices. Even the
lower-cost devices have plenty of performance for common visualization needs. How-
ever. hardware considerations continue to force important architectural decisions in
graphics software.

High resolution color workstations (1280 by 1024 pixels. & bits deep) seem to
be the current norm. but we prefer to work with smaller image buffers (6340 by 480
pixels. 24 bits deep). This is a strategic decision: if vou develop applications that
depend on high resolution. until HDTV arrives you'll find it very difficult to produce
a legible videotape. How often we hear the lament at conferences. ~Well. yvou can't
see it very well here. but back in my lab..."! Working at the lower resolution forces
one to come to grips early on with proper antialiasing. integrating it well into the
environment instead of leaving it as a last-minute hassle when making photos under
deadline pressure.

The NTSC discipline also discourages the application writer from filling the screen
with menu and dial widgets. We prefer to relegate these to an adjacent monochrome
X display or. even better. to prune the user interface ruthlessly so no widgets are
necessary. For example. we adopted a helicopter model for all our tools. so that
the mouse is used as a virtual control stick for flving around the object on display.
Immediate visual feedback works more smoothly than twirling a dials attached to
each axis. As another example. Pat Hanrahan's medit program lets one move lights
around by grabbing a reflection highlight with the mouse and moving it on the surface
of a displaved object. To our eves. a control widget on-screen is like chartjunk{17] in
a line drawing: it may serve some valid purpose. but the overall effect is to distract
from the data.

For portability, we have restricted ourselves to a three-button mouse as the only
input device. There is some concern also that adding degrees of freedom overwhelms
the average operator. An interesting lesson in the development of V/STOL aircraft
was that pilots learned to take off more stably by being trained to only change a few
throttle and attitude variables at a time.

The issue of 8 bits versus 24 bits is less decisive: there are effective dithering
and color compression algorithms available to squeeze images into 8 bits. But these
are global algerithuns and lead to visible artifacts unless properly tuned. so we prefer
the simplicity of 24 bits. made affordable by the astonishing drop in memory prices.
The image needs to be rendered anvway at 24 bits (o1 more, since alpha and depth
values are also commonly needed). The 640 by 480 resolution. in contrast. does yield
a noticeable improvement in rendering times.

Another advantage of standardizing on NTSC is that displays are inexpensive
enough to put on everyone’s desk, and signals can be readily distributed by existing
video switch technology. Graphics tends to be a tool that is just used a few times a
day: when one has to run down the hall to a graphics lab, it tends to be used less
than it should be. One solution is to put personal graphics workstations in each office.
but that is expensive. Making the displays cheap allows one to purchase fewer. more
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powerful graphics engines to be shared among more people. some of them just casual
users who can’t justify the cost of a dedicated workstation.

Even with an investment in high-end graphics workstations. the rendering time for
many of our displays may be several seconds per frame. Rather than compromise on
the graphics or spend great effort optimizing the rendering. we content ourselves with
making a video in batch mode, recording animation frame-at-a-time. The numerical
simulation that feeds the graphics is tvpically run i bateh mode anvway. so this does
not feel very restrictive.

Our top level pipeline is shown in Figure 2. RIB (RenderMan Interface
Bytestream) [14) is a convenient language for describing geometry. It has enough
generality that all visualization technigues we can currently contemplate using are
covered: it makes gluing together the output of several independent programs easy:
it can be rendered by high-quality. commercial software or (in restricted siubsets) hy
simple home-brew drivers adapted to local hardware. TIFF and picture(5) are two
image file formats. MIDI is a standard music file format.

The economics of publishing at the present time preclude the use of color for
specialized scholarly journals. Since animation is at least as valuable to us as color. we
choose to skip from PostScript™' drawings straight to video. bypassing the difficulties
of printing accurate color.

We thank Allan Wilks for contouring code and for comments on a draft of this
paper. PostScript is a registered trademark of Adobe Systems Inc. RenderMan is
a registered trademark of Pixar. UNIX is a registered trademark of UNIX System
Laboratories. Inc.
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Distributed visual programming environment:
an attempt to integrate third generation languages
with advanced user environments.
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Abstract, grams and advanced user-interaction for program develop-
ment and execution. In this paper we discuss a distributed
visual programming environment under development at our
laboratory (Acm91), and focus on some probiems encoun-
tered and their possible solutions.

In section 2 we discuss the strain between a data oriented
and a procedure oriented approach. Section 3 describes the
environment design and some aspects of the implementation.
Section 4 focuses on the approach taken for supporting di-
verse data-structures within the environment.

This paper describes a visual environment designed to
casily develop programs based on already existing software.
Typically third generation scientific libraries (e.g. IMSL,
NAG) having procedural interfaces should be incorporated.
The design supports distributed execution of programs in a
dataflow model, offering the possibility to atlot software pro-
cedures 1o suitable architectures. Attention in this paper is
focused on design problems originating from the great
varicty of data-structures that have to be supported.

1. Introduction. 2. Data object versus procedure object oriented ap-
roach.
With the advent of high resolution graphics workstations P . .. ..
a significant impulse has been given 10 the development of ~ Roughly speaking the transition between traditional
general tools for advanced user interaction and program- and third generation programming languages and advanced sys-
data- visualization. On the one hand, important achieve- tems is marked by the introduction of the concept of data ob-

ments in the field of operating systems and associated tool-  JS€tS: i.e. a user-defined collection of data and a set of
boxes (Mac, Sun) need no further emphasis. On the other associated functions by means of which the data can be ma-
hand, compared to this, developments of tools for program mp_ulatgd, The concept of d}ita object is especially apt for vis-
and data visualization are complicated due to the broadness ualization of data (see for instance Ups89).

of the field of possible applications. (For a review we refer ~ Acasestudy, Signor (Cort89), in the field of systems and
1o (Shu89) and (Vis86)). In our view, a visual environment signal theory, was carried out wnh'm our laboratory. In this
designed for general scicntific problem solving should excel case the data-sct comprised onc dimensional arrays, repre-
in two major properties besides visual representation, name- senting a signal in a finitc ime interval, whereas the actions
ly casy incorporation of already existing software and the included operations like generation of data, transformation
possibility for distributed execution. The first quality is im- filtering, deconvolution etc. The visualization of data con-
portant since the different scientific communities heavily use sists merely of graphs of value versus time for this restricted
existing software in the form of well maintained and highly ~ 9aa set, while program visualization is done by iconic rep-
optimized libraries like IMSL, NAG, ESS1 and own prob-  fesentation of the actions. Thus, in Signor a reswricted data
lem specific libraries. This quality promotes software reusa- set corpbmeq with a resmf:ted set of actions defines a pow-
bility. The latter quality is necessitated by the trend of ~ ©rful visual signal processing language. .

current computer facilities showing a high degree of archi- One of our major objectives, to support existing software
tectural differentiation (Ros89) for activities like *number coded in some third generation language, rules out this pos-
crunching’, data acquisition and visualization. Other basic sibility of defining an entirely new visual environment hav-

concepts (o be incorporated are: visual representation of ing a well defined sct of data objects, since all existing
oneep heorpo presen pre- software should then be adapted to mect the specific require-

ments of this new environment. Instead, it calls for a proce-
dure oriented approach in which the environment is adopted
Acknowledgement: Part of this research was to the requirements imposed by the procedures, i.e. the basic
funded by a grant of IBM, The Netherlands. object in our environment is refated to a procedure which
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transforms the data (Acm91).

The combination of the concept of using existing soft-
ware procedures as atomic objects and the concept of visual-
izing programs defined in terms of these objects implies the
use of a dataflow model(Dav82) for execution of the pro-
gram. This is argumented by the following reasons: firstly,
solving scientific problems in terms of already existing mod-
ules puts the flow of data more central than the flow of con-
trol in a program. The fine grain flow of control will be found
inside the procedure objects, screened from public access.
Here optimization with respect to the specific architecture
like vectorization and/or parallellization can be carried out.
The course grain flow of control is determined by the data
dependencies among the parameters of the different proce-
dures, so it is the dataflow that governs the program execu-
tion state. This is especially important for the control of
distributed processes.

The second reason to use a dataflow model is that flow
programs are closely related to visual programs: they are eas-
ily translated into graphs, the nodes representing objects
(procedures) and the arcs representing data dependencies be-
tween procedures. This graph defines a visual representation
of the program. Another advantage is that flow programs
easily combing into larger programs, offering the possibility
of layered programming. Viewed from the implementation
level, a distributed execution model bascd on a dataflow is
(relatively) straightforward.

It should be stressed here, that the abstraction level of the
atomic objects (the nodes in the graph, representing 3gl li-
brary procedures) in our flow model will in general be con-
siderably higher than the operators in a regular flow
language, although low level procedural statements are not
excluded (and are probably often indispensable). Clearly we
intend to reduce the number of low level statements needed
in relation to data conversion and conditional execution in
programs by offering advanced facilitics in our environment.

During the last ten years, the object oriented model has
found wide acceptance (Cox86). Object based models were
applied for constructing distributed systcms [Bir85, Bla87].
Object orientation provides natural ways for composing a
large system from a number of autonomous components
which interact only via some well defincd interface. Our ap-
proach to represent the 3gl procedure as the atomic objects
in a visual environment clearly saves a number of the advan-
tages of the object oriented model, in particular at the envi-
ronment Jevel but not so much at the flow programming
level. Like in object oriented programming, the atomic- or
procedure object in a dataflow environment behaves as an
autonomous entity that has a state. It responds to messages
by its data dependencies. With the proper rules for creating
compound objects, neat classification and inheritance me-
chanics are imposed. Regarding encapsulation, compound
objects may very well hide parameters that are not of public
interest. However, there is a leeway between objects in our

environment and objects in the object oriented model, caused
by the fact that in our approach the procedures action is cen-
tral, while in the object oriented model the data is central.
One could paraphrase this as a strain between procedure-ob-
jects and data-objects, were in the first case procedural ac-
tion is governed by dataflow, whereas in the second case data
is governed by procedural interaction. No doubt this discrim-
ination is artificial and depends on a relative point of view,
but it serves as a useful concept here.

Procedure oriented approach

Procedure objects are represented in the environment by
icons having definable images clarifying their action. This
action is commonly defined by a third generation language
procedure.

A major problem of the procedure oriented approach is
that the data exchanged between procedures can have virtu-
ally any structure as conceivable in the third generation lan-
guages supported. Although most commonly used data-
structures will be uncomplicated, sophisticated support of
general structures is a necessity if the environment has 1o
meet the requirements of the scientific user, because we aim
at viable mixing rather heterogeneous sets of procedures.
This support includes edit and type-cast facilities for arbi-
trary data-structures. Among the problems that had to be
solved in this context is the architectural dependency of dawa
representation: not only docs the representation of basic
types (i.e. C- language floais or doubles) differ, but also the
way compound types are composed differ. The lauer is
caused by alignment differences but can also be language (or
even compiler) dependent.

The procedure-object approach offers the possibility 10
(re)group a number of procedures to a new composite object.
This may prevent the visual representation of growing visual
programs (containing many objects) from cluticring the
screen. Composite-objects have their own resulting parame-
ters and iconic repsresentations. They represent sub-pro-
grams, thus offering a way to structure the visual program in
layers.

3. Environment design

The environment must provide all that is necessary to
edit and execute programs. There are five more or less isolat-
ed aspects: objects have to be selected (by a query 100l), ob-
jects have 1o be displayed and manipulated for program
definition(by a program visulalizing tool), object’s parame-
ters have 10 be edited (by a so called varedit tool) and objects
have to be executed (by a runtime execution model, control-
led from the visualizing tool). Lastly, some tool is needed to
easily import new procedures in the environment.

Because the wealth of existing libraries results in numer-
ous objects, a "selection by query’ tool greatly simplifies this
selection by presenting the objects in an organised form.

A program in this visual environment is visualized by
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icons and connections (arrows) resulting in a two dimension-
al directed graph. We will refer 1o the user-interface con-
cerned with this visualization as the program visualizer, The
nodes in the graph are procedures represented by object
icons. After selection, these icons can be placed on a draw
area in the program visualizer (see figure 1). Connections
(edges) in the graph are created by drawing lines from pro-
cedures producing output data into procedures accepting in-
put data.

When executing a visual program, its graph is mapped
onto a dataflow model of the program, thus the connections
serve to represent the dataflow. It should be pointed out here
however that the program description, residing in a database,
could also be passed to a code generator as an alternative.
This code generator could produce ready to hand, compiled,
program modules that execute faster compared to the flow
model alternative. It will be clear though, that the flow model
is far more flexible when steering execution or adjusting the
program during execution,

Another essential user-interaction is the process of edit-
ing procedure parameters. This edit interaction must have the
capability of visualizing generic data-structures, in that pro-
viding for the needs of easy browsing and updating of (pos-

Action Panel

no [

keep selection:

initvars flushvars

Program Visualizer

Select action event for middle mouse button:

Delete Connect
Varedit CFire Fire Pools

===PROGRAMMER (edit object noname,

sibly) complicated data-structures. This user-interaction
requires (in common with, among other things, the flow con-
nection action), that a distinction must be made in the visu-
alized program between the different parameters of an
object. Therefore, the objects icon area is subdivided into
one or more sub-areas. These sub-areas serve as sensitive
spots during these user-interactions and, being definable
small icons themselves, they may depict the data-structures
involved. Consequently, in order to edit a parameter, the ap-
propriate action-event is selected from a menu with the aid
of a locator. Subsequently, this event is dropped on the sub-
area representing that parameter. This interaction will start a
parameter edit session in a separate window. In this window,
the parameter’s data-structure is utilized to present the data
involved. The user can access different parts of the data-
structure either by specifying names or by simply selecting
names with the locator.

Requirements with respect to storage and management of
data is an issue in the implementation of this environment. In
this context, data refers to all conceivable forms of data in-
volved like: icon images, values and definitions of parame-
ters, procedure names, but also the program graph
descriptions. At this point we take advantage of the capabil-
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Figure 1

Example program representing a least squares fit that fits a polynomial and plots the source data and the fitted data.

The formula used is 6 = (XT X)" XTy

Dropping a Varedit action event on the design matrix object will reveal its only remaining non-private variable: the
desired polynomial degree, which can subsequently be edited.
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ities offered by relational database management systems (rd-
bms). Other implementation key issues are execution of
programs and the management of data-structures during cre-
ation and execution of programs.

Execution of programs

Any object (whether atomic or composite), or any collec-
tion of objects and connections, defines an executable pro-
gram in the environment. This means that any object found
with the query tool can also be executed.

This stand-alone execution of objects offers the user the
possibility of getting familiar with available software. This is
only meaningful when the environment has default values
available for the input parameters involved: many proce-
dures found in software libraries like IMSL need numerous
parameters that are not at first of interest. In the current im-
plementation, parameters can be supplied wiiir default and
extreme values.

The use of a dataflow model for executing a visual pro-
gram has yet another advantage: the fact that parameters are
participating not only in the data- but also in the control flow
of the program, offers handles for visual feedback from the
execution state of objects. The combination of an environ-
ment, visualizing 3gl procedures as objects, and executing of
those objects in a dataflow model, presents the executing
program in an object oriented way: The user can query (run-
ning) objects on their execution state, input values and re-
suiting output values, from the program visualizer interface.
This is simply done by selecting the relevant event (e.g. a re-
quest status event) and passing this event to the object in
question by a subsequent mouse click on the object’s icon
image.

For implementation of the dataflow model we used a
client/(multiple) server combination based on the remote
procedure call (RPC) library (this software library offers the
mechanics for remote execution of procedures). In this case
the client is the program visualizer, giving the user complete
control over the dataflow. The purpose of the servers is to ex-
ecute the code involved. Each server functions as an encap-
sulation of a set of procedures and is generated and forked on
the site in the network where those procedures were intended
to be executed. The encapsulation handlcs the administrative
tasks involved in the dataflow model, i.e. how and when to
fire (execute) an object. Moreover, it serves as a framework
for exchange of data between objects. This exchange is
based on a runtime description of the memory layout of the
procedure’s parameters, which is discussed in the next sec-
tion. As intended, the client/(multiple) server design allows
for network wide, highly parallel, execution of the program.
Clearly it is also possible to incorporate in this way all kinds
of different dedicated hardware, on the condition that remote
procedure call (RPC) software is supported.

To execute a flow program three steps are needed. First-
ly, encapsulation servers are generated based on the config-
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uration of procedures used and sites in the network
participating. Secondly, these encapsulation servers are exe-
cuted (forked). Thirdly, the encapsulation servers are loaded
with all needed information from the database, like initial
values of procedure parameters and destinations of output
variables. In order to direct the first and second actions, eve-
ry site participating in the network runs a daemon called cre-
ation server. Its purpose is creating, conwolling and
destroying the encapsulation servers, Besides, it reports back
on valuable information from its host, such as the current
workload. These three setup actions are automated and are
activated by the user by means of a setup-menu from the pro-
gram visualizer.

At runtime, all communication imposed by the dataflow
directly takes place among the encapsulation servers for ef-
ficiency reasons. The program visualizer interface though, is
at any time in control of the state of the encapsulation serv-
ers. That is, it can hold, release, fire or reset objects in the ex-
ecuting program.

4. Mixed language data-structure description.

The procedure oriented approach calls for generic defini-
tion of datatypes involved due 1o the variety of procedures
the environment supports, like for instance fortran coded
math libs or c-language coded user-defined procedures. Such
in contrast to specialized environments (like Signor) where
the set of datatypes is limited and can therefore be handled
on an individual, hard coded, basis.

The data-structure description used is designed to sup-
port, in a transparent way, different architectures and to al-
low, in a flexible way, a typecast from one datatype to
another. Whereas the first characteristic is a mere necessity
the second characteristic augments user-friendliness to ad-
justing data-structures used by various application proce-
dures, without having to write explicit code.

By defining a data-structure description method, a stand-
ard is set for formatted storage of data in files, strings and da-
tabases. This standard is heavily utilized in low level
software layers in the environment design, but it is also ap-
plied at the user level by predefined objects, that handle
(store, pack, retrieve etc.) structured data. For example, one
can think of an object recognizable by its icon depicung a da-
tabase: on reception of data, the object also receives the data-
structure description and utilizes this description 1o generate
a record layout that will fit the data-structure.

The data-structure description is a superset of datatypes
defined in those programming languages which are presently
supported. We have implemented a recursive description,
defined by a list of tokens, which decomposes the user-de-
fined data-structures into basic types like chars, integers and
floats (see table 1). This tokenlist is designed for fast decom-
posing data-structures residing in memory, thus the list
serves as a description fit for use at runtime. The distinct
memory layouts generated by different types and languages




are reflected in the set of available tokens. To screen users
from this (relatively) low level structure definition, a simple
(bi-directional) parser is invoked producing the recursive
type-definition when entering or editing type-definitions. It
has its own pascal styled syntax, but for instance, a preceding
¢ language keyword "typedef” will allow ¢ type-definitions
1o be used.

To allow an easy user-interaction (e.g. when using the
varedit tool), besides the data-structure description logical
names are needed. Therefore, detached from the tokenlist,
the parser generates a packed namelist for these occasions.

As a simple example, we will consider a C-language de-
fined matrix versus a fortran defined matrix. From a users
pcint of view, there should be no difference in usage, so the
environment presents both matrices in the form of a column
of rows when displaying or type-casting. This implies that
type-casting one into ancther yields the expected conversion
(1.e. transposing the matrix). This principle of a meaningful
(default) type-conversion, extends to other stiuctured da-
tatype descriptions including for instance C-defined matrices
defined by a column of pointers to arrays.

At the implementation level though, memory layouts dif-
fer. In the C-language, a mairix is stored row-wise in memo-
ry, whereas in fortran a matrix is stored column-wise in
memory.To handle these situations in a correct manner, the
describing tokenlist knows different tokens for row-wise
versus  column-wise memory decomposition. The tokenlist

_array n _array m subtype
is in accordance with the memory layout of row-wise stored
matrices because the decomposition defined by this list as-
signs the _array tokens more 10 the right side higher priority
for changing their index values. In contrast, in the tokenlist
_farray m _farray n subtype
higher priority is assigned to the _farray tokens that are more
on the left in the list, in this way mapping on column-wise
stored matrices. When entering definitions, this difference is
implied in the usages of square brackets for row-wise versus
round brackets for column-wise storage.

The parser generating the tokenlist allows for both the us-
age of premeditated- and the usage of default names. For in-
stance, the afore mentioned tokenlist would be generated by
parsing the definition

matrixname[n] of rowname[m] of

elementname of subtype;
as well as by the definition

matrixname[n,m] of subtype;
The first definition specifies names at every level in the re-
cursive specification: an array-clement name, a name used
when addressing rows, and a name used for addressing the
whole matrix. This guarantees that the object-designer fixes
the names that the environment will present during user-in-
teraction. The second straightforward definition attaches de-
fault names to sublevels of the data structure.

Table 1:

compound datatypes (#: number of clements):
type: basic type | compound type.

Compound type:

array # subtype

farray # subtype

struct subtype {, subtype} endstruct

complex subtype

rptr subtype (relocatable pointer)

ptr subtype (non relocatable ptr)
examples of basic types are:

int4

floai4

float8

string

chararray #

bytes #

Software layer for runtime support of the data-descrip-
tions

The software layer implemented for supporting the da-
latype descriptions is capable of runtime composing and de-
composing memory areas according to the tokenized
datatype description. As pointed out, this decomposition is a
key issue at the implementation level. Yet another example
of this is the usage of the (de)composition in combination
with basic calls to the XDR library (this library converts
data-structures to and from an external representation), in or-
der to exchange structured data among different architec-
tures. To solve the problems originating in the architectural
and language dependent alignment differences, the tokens in
the tokenlist are packed with additional information. This in-
formation is generated on creation or receipt of a tokenlist on
a specific architecture; the information being dependent on
the specific architecture as well as on the configuration of the
tokenlist involved. The information in question mainly con-
sists of (cumulative) size information of subtypes in the con-
text of the spanning type.

How the decomposition is used is briefly illustrated by
the flow diagram in figure 2. The decomposition is done by
a procedure altering a private stack. The stack contains all
relevant data like address pointers in the memory area being
decomposed, the current type being accessed elc. Afier every
iteration of this procedure, the next basic element (if any) is
located in the memory area and in the tokenlist, and is han-
dled by examining the contents of the stack. If flags on the
stack indicate that initialization, termination, or separation
events occurred during the iteration, proper callback func-
tions set previously by (and thus depending on the nature of)
the caller, are invoked. For exampie, these callback functions
typically print colons, opening and closing brackets in print
functions that are designed for printing structured data (after
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initialize stac|
decompose memory for next
basic element

init callback
end callback

(all elements handled)

.

examine result
of

decomposition

handle basic
element

Figure 2

Decomposition of memory areas is done by iterating a de-
composition procedure and examining its results. The da-
tatype structure, a memory address referencing the memory
area and the proper callback functions are set in the init
phase. Special ways of decomposing structured data, needed
when typecasting, can also be specified in the init phase

the manner of initialization assignments for datatypes in the
c-language). But, depending on the type of the caller, more
sophisticated tasks can be done, like memory (re)allocation
during typecasts, or when reading (e.g. from files) into point-
er typed variables.

Typecasting is done by the environment by parallel de-
composing the source and destination data-structures. The
basic source elements will be converted to the basic destina-
tion elements, the afore mentioned callbacks performing
typespecific actions, e.g. when casting to an array pointed to
by a nill pointer, the initalization callback invoked will per-
form the implied memory allocation.

Extending the set of types supported

In developing this advanced environment, we aimed at
creating a fast prototype environment besides supporting ex-
isting 3gl procedures. In this context, the environment has
two types of end users: users who will exclusivly use already
existing procedure objects and users who will also extend,
modify and maintain a collection of procedure objects. The
latter requests that the set of datatypes supported is extenda-
ble. By extending the set of basic data types, types can be in-
roduced having special properties regarding typecasting and
other basic interaction.

As an example of the power of special properties at-
tached to special types, consider the chararray type from ta-
ble 1. This datatype maps on the same memory layout as the
{structured) datatype: array of chars. However, casting an in-
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teger type to the chararray type will result in a string repre-
sentation of the integer, in contrast to casting an int type to
an array of chars. The latter would result in a normal cast of
an integer to the first element in the array, being of character
type. The complex type in table 1 serves as an example of a
special compound type. Most common, its subtype would be
doubles or floats. Type specific actions in this case typically
affect ascii printing and reading style (e.g. use of the form
a+bj). Moreover, type-casting between complex variables
having different subtypes is transparent now.

Towards a visual flow language

It will be obvious that the proposed environment pro-
motes the making up of organized collections of objects.
These collections can be viewed as object libraries. While on
the one hand these libraries will naturally emanate from im-
ported 3gl libraries, being topic specific, on the other hand
there will be special purpose libraries. In the latter category
are libraries with objects performing actions that transcend
regular procedural action, for instance in that they affect the
dataflow during execution. This will typically be reached by
doing calls to the flow system, comparable to system calls
done to an operating system.

As an example, a so called convert object alters the flow
in a flow program: It collects input data and converts this
data to (commonly different structured) output data. In this
way a conversion is achieved that (de)serializes a data stream
to (from) a stream of other structures. One can think of an ob-
Ject producing numbers, that are collected in an array by the
convert object. The array can subsequently be passed to
some display object that plots a graph.

Another example is a special conditional (flow) 'if* ob-
ject (figure 3) having a chameleon typed input auribute,
meaning it copies a received data structure description as its
own structure definition. This object has, besides its input at-
tribute, a function attribute and two output attributes. The
function attribute can be connected to an object that will re-
ceives the afore mentioned data structure and returns a deci-
sion value for the "if” statement. The data and its structure are
propagated to the output corresponding 1o the result of the
"if’. For example, the object interconnected with the function
attribute of the 'if” object could evaluate a determinant; the
’if” object would decide on the resulting value whether the
dataflow should be passed to a matrix inversion object or not.
The point in describing these examples is that a well-consid-

Sfigure 3.

Represenuation of an
'if object propagating
data to one of its out-
puts, depending on the
result of an external
Sfunction.




ered collection of special purpose objects, can very well
serve 1o constitute a visual (flow) language, but again we
have a higher object abstraction level in mind than a regular
3gl statement level.

5. Conclusion.

The purpose of our visual programming environment is
to facilitate the programming effort which a scientist has to
make, when composing a program consisting to a large ex-
tent of already existing (often problem oriented) software.
The environment which we have developed can elegantly be
used for this activity. Its ability for distributed processing al-
lows the user to utilize nodes :n the network without specific
knowledge about their architecture, operating system or de-
tails about remote procedure call mechanisms. Compared to
the traditional programming activity the user now is mainly
concerned with selecting the appropriate software and defin-
ing the intended data exchange, without having to explicitly
code common actions like variable editing and typecasts.
The possibilities of the cast operation allow for intermixing
procedures, each introducing their own set of datatypes.

Taking together these advantages, the user can concen-
trate on his specific problem at a more abstract level, heed-
less of low level implementation details. This simplifies
prototyping and program development. This visual environ-
ment adds considerably to the possibilities of line oriented
debuggers by offering stepwise execution control and acces-
sory data retrieval at the abstraction level of the problem.
The user can selectively and interactively stipulate which
and when data is to be visualized, either by simply requesting
a structured rendering of the data or by linking the dataflow
into some suitable procedure object capable of visualizing
the (possibly casted) data.

Cumrently we are testing the prototype on a number of
typical applications to mcasure the reduction in program-
ming effort achicved by using this environment and the ef-
ficiency of the clienyserver dataflow model and its
possibilities in the field of course grain parallelism.

Among the aspects we have 10 gain more experience
with, is how the contrast between our procedure oriented ap-
proach and a data oriented approach works out in practice.
Our experience with solving problems using topic specific li-
braries is promising, but in these cases the libraries already
imply the use of high level abstract data objects (e.g. matri-
ces). This is clearly different from using existing problem
specific code not originally designed in a more or less (da-
ta)object oriented way. Another aspect we need 1o gain expe-
rience with is the impact of the relational database
management system used in the implementation of the envi-
ronment, especially with regard to the time needed for load-
ing large programs in the visualizer and in the execution
model.

Also, there are a number of problem fields that have yet
10 be investigated. One of these problems is the conflict be-
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tween usage of fortran common blocks and distributed exe-
cution: clearly, restrictions imposed by the use of 3g
language procedures are not yet fully solved here (that is,
they are not yet completely transparent to the environment
user). Similar problems are encountered with respect to file
io handling in different 3g languages.
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Visualization and its Use in Scientific Computation
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1 Introduction

The importance of visualization in scientific computation is now widely recognised. Recent
advances in large-scale, parallel computing have increased the potential of numerical sim-
ulation as a means of experimentation in the applied sciences; visual techniques of data
presentation play a key role in the understanding and evaluation of the simulation results.

The birth of the subject is often associated with the the publication of the NSF-commissioned
report ‘Visualization in Scientific Computing’ (McCormick et al, 1987). This report argued
the case for increased attention to be paid to visualization, if full value was to be obtained
from the investment in the US national supercomputer centres. Several of these centres then
initiated major research and development projects in visualization, the results of which are
now beginning to appear. A recent survey volume (Nielson et al, 1990) provides a good
overview of these activities.

It is therefore tempting to think of ‘scientific visualization’ as a new discipline. But there
is a case for arguing that it is only the term which is new. West (1991) claims that histori-
cally many original thinkers in the physical sciences have relied heavily on visual modes of
thought, using images rather than words and numbers. For example, James Clerk Maxwell,
founder of thermodynamics, built 3D clay models as an aid to his understanding of functions
of two independent variables. (Some interesting computer simulations of Clerk Maxwell’s
work have recently been done (Jolls and Coy, 1990)).

From the early days of computing too, scientists have used computer graphics as a key
part of their experimentation. In the UK, much pioneering graphics work, involving the
production of animated sequences on film, was carried out at the Rutherford Appleton and
Culham Laboratories in support of physicists in the 1960s. The Culham work led to the
development of the GHOST system (GHOST, 1982) which has been widely used in the UK
scientific research community over two decades.

While one can debate whether scientific visualization is a new subject or merely a new
name, there is no doubt its importance has increased significantly in recent years. This can
be attributed to a number of key developments:

¢ The increased computing power offered by modern systems, especially parallel and
novel architectures, has extended the range of numerical simulation experiments which
scientists can carry out. For example, meteorologists are tackling increasingly large
atmospheric models. These simulations in turn generate vast amounts of data - ‘fire-
hoses’ of data as they have been called; this data has to be evaluated as efficiently
as possible. It is simply impossible for the human brain to comprehend more than
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a tiny fraction of the data in numerical form. However by converting entire fields of
variables to a colour image, the brain is able to assimilate global information about
the simulation;

o The increase in automatic data collection equipment, in particular medical scanners
and remote sensing devices, has likewise led to large quantities of data requiring rapid
processing;

o The trend away from batch processing to interactive working on a window-based
workstation has brought graphics display technology to the scientist’s desk as the
norm.

While much of the recent activity in visualization has stemmed from the US supercomputer
centres, there is an increasing contribution from Europe. A Eurographics working group
has held two successful workshops, while in the UK, a recent workshop produced a status
_report on the subject (Brodlie et al, 1991). The authors of this paper are working in a
collaborative research project, called GRASPARC, which is examining the close integration
of computation and visualization (Brodlie et al, 1990). The project involves NAG Ltd,
University of Leeds and Quintek Ltd.

This paper arises from our work on GRASPARC. Section 2 gives an overview of current
work in scientific visualization which has provided input and stimulus to the project. The
subject has still to mature - there are different views of its scope and underlying model,
and no standards for the functionality to be provided by a system. A small prototype has
been built within the GRASPARC project, to help our understanding of the subject and
tease out the problems. This prototype is described in section 3, with future plans and
conclusions in section 4.

2 Current Work in Scientific Visualization

2.1 Scope and Definition

A number of attempts have been made to define the term ‘visualization’. A common flavour
to these definitions is the idea that visualization is an aid to understanding: it is part of
the experimental process, not simply a means of presenting the final results.

A succinct definition is given by Haber and McNabb (1990):

Visualization is the use of computer imaging technology as a tool for compre-
hending data obtained by simulation or physical measurement.

This definition fails however to convey the value of visualization in allowing the scientist to
control or steer the simulation, an important aspect certainly in the GRASPARC project.
Marshall et al (1990) distinguish three modes in which visualization can be used:

Post-processing where the simulation results are stored and viewed at a later time, the
scientist having interactive control over how the data are displayed;
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Tracking where the simulation results are fed directly to the graphics module, the scientist
again controlling how the results are displayed;

Steering where the simulation results are again fed to the graphics module, but with the
scientist having interactive control over both simulation and visualization.

This suggests an extension to the Haber and McNabb definition, along the lines that visu-
alization can be seen as a tool for guiding the computational process.

2.2 Underlying Model

Just as different authors have suggested different definitions of visualization, so there have
been several attempts to define a model of the processes involved. A common thread is to
distinguish different phases through which a physical problem passes towards its computa-
tional solution.

Haber and McNabb (1990) present the underlying model which is the basis of the National
Center for Supercomputing Applications (NCSA) RIVERS project. They draw a parallel
between the different stages in numerical simulation, and the corresponding stages in sci-
entific experimentation. Thus they separate the simulation into three phases: modelling,
solution, and interpretation / evaluation.

The modelling phase involves a two-step process in which the original, perhaps loosely
defined, problem is first posed as a well defined physical model, and is then translated into an
idealized mathematical formulation. The solution phase typically involves a discretisation
step, where the continuous mathematical model is approximated by some discrete model to
which numerical techniques can be applied. The output from this phase is a field solution
for the unknown quantities in the model. Finally the interpretation and evaluation phase
involves the analysis of the computed results, leading perhaps to some modification in the
physical model, its mathematical idealization or the numerical solution technique. It is in
this final phase that to date visualization has been most successfully employed, taking the
field solution and displaying it in different ways.

Haber and McNabb see visualization itself as a three stage process. These stages trans-
form the solution data to a displayable image on a graphics device, the stages being: data
enhancement, visualization mapping, and rendering.

The data enhancement stage takes the raw solution data, typically defined on a mesh, and
converts it to a form suitable for visualization. This frequently involves constructing a
continuous mode! of the underlying field using an interpolation process. This interpolation
process can be regarded as filling out the solution data with sufficient information; in the
case of data obtained from scanners and remote sensing equipment however, this phase is
more one of data reduction - the data is often collected to finer detail than the eventual
display resolution.

The visualization mapping stage involves the selection of an appropriate visualization ab.
straction: for example, a 2D scalar field can be displayed as a contour map or a surface
view. The choice of abstraction needs to be made so as to best understand the data.

The final rendering stage takes the abstract visualization object such as a contour map, and
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renders it on the display surface.

This three-stage visualization pipeline is summarized in Figure 1.

Solution Data

Data Enrichment / Refinement

Enhanced Data

Visualization Mapping

Abstract Visualization Object

Rendering

Image

Figure 1 - Haber-McNabb Visualization Model

A similar visualization model was put forward by Upson et al (1989) as a basis for the
Application Visualization System (AVS). They distinguish two cycles in the problem solving
process: a computation cycle and an analysis cvcle. The computation cycle consists of the
following steps:

1. A theoretical stage. where the appropriate physical laws are determined.

2. A programming stage, where the physical laws are transformed to a computer pro-
gram.

3. A specification stage, where details such as the computational grid, boundary condi-
tions, etc are defined - these are essentially parameters of the computer program.

4. A computation stage, where the program is executed under the specified conditions.

. An analysis stage where the results are examined and either deemed acceptable, or
suggest further work. The cycle may be resumed from any of the first three steps,
depending on the analysis of what is required.

Ut

The analysis stage is itself a cycle of three steps, roughly equivalent to the three-stage
visualization pipeline of Haber and McNabb. The model is illustrated in Figure 2.
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Theory

Program

Specification

Computation

Analysis

Data Filtering

Map Data to Geometric Model

Rendering

Figure 2 - AVS Visualization Model

Another view of the ‘computational’ and ‘analysis’ cycles is given in the paper by Carpenter
{1990).

2.3 Classification of Techniques

With the variety of types of data and techniques availible, it is useful to have a classification
scheme to place some order on the subject. A number of schemes have been proposed. For
example, the Bergeron and Grinstein (1989) schenic is based on the data that is to be
visualized. They introduce the concept of lattices oi data. A p-dimensional lattice of g-
dimensional data is written L?. The dimension of the lattice indicates the ordering of the
data - zero-dimensional is unordered (eg a set of points), one-dimensional is a vector of data
rlements (eg a list of points to be connected by a polyline), and two-dimensional indicates
an array of data elements (eg height and pressure at the nodes of a rectangular grid). The
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dimension of the data refers to the number of components in a data element. Thus a list of
points in 3D is a one-dimensional lattice of three-dimensional data, an object of type L3.

Bergeron and Grinstein go on to describe the visualization process as a sequence of trans-
formations on lattices. The process of interpolating scattered data on to a rectangular grid,
for example, would convert a lattice LJ to a lattice L3.

Another classification scheme was developed at a UK workshop on scientific visualization
(Brodlie, 1991). This is based, not on the properties of the sampled data, but on the
properties of the entity, or field, underlying the data. This is the empirical model created
in the ‘data enrichment’ stage of the Haber and McNabb pipeline. The entity is written as
E, with a superscript to indicate the nature of the field, which can be Point (P), Scalar (S),
Vector (V) or Tensor (T). In the case of vector and tensor fields, the dimension is indicated
as a subscript; so EY3 indicates a 3D vector field.

The other element of the classification is the dimensior of the domain over which the entity
is defined. Thus a scalar field in 2D is written E%, a 3D vector field over 3D space as E;a.
Further distinction is made according to the nature of the domain: if the entity is defined
over ranges of values (as in a histogram or choropleth map), the subscript is written as [n);
if the entity is defined over an enumerated set (as in a bar chart), the subscript is written

{n}.
It has been found that this classification scheme can code all the popular visualization
techniques, from a 2D scatter plot (E.f) to a volume visualization ( E5 ). to a shaded contour
map (E3;)

{21’

A third classification scheme uses the mathematics of fiber bundles (Butler and Pendley,
1989). A fiber bundle is a space constructed from a base space and a fiber space: one
tan imagine a fiber through each point of the base space. Essentially the base space cor-
responds to the independent variables, the fiber to the dependent variables; the bundle is
the Cartesian product of the base and the fiber. For example, a line graph is formalised as
follows. The base is the real line (x-axis) and a fiber is a real line through any point on the
base; the fiber bundle is the set of all such lines. A section through a bundle is obtained by
picking a point on each fiber - giving a line graph. Butler and Pendley develop a taxonomy
of techniques, classifying them according to dimension of base and dimension of fibre. A
nice feature of the scheme is that operators can be defined on the bundles to obtain, for
example, cross-sections which are bundles of lower dimension.

2.4 Visualization Systems

A number of software systems have been developed, all following the visualization paradigm
expressed by Haber and McNabb - with the data enhancement, visualization abstraction and
rendering being implemented as a pipeline of processes. They are often given the generic
term of ‘dataflow systems’, reflecting the passage of data through the pipeline; they are
also referred to as ‘application builders’, since they provide a toolkit from which different
applications can be created.

The first of these systems to make a major impact was AVS, developed by Stellar (Upson
ct al, 1989) - now part of Stardent. It provides a number of modules for accepting data
into the system, filtering and enhancing the data, defining the abstract representation and
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rendering on the display. To build a particular application, the user connects modules
together using a network editor. The resulting pipeline will typically have a data source at
one end, and a display module at the other end. Networks can be dynamically reconfigured
to allow a scientist to experiment with different representations. The system has an X-
Window based user interface with Motif-like look and feel. An early criticism was the fact
that it was restricted to Stellar workstations; but this situation has dramatically changed
with announcements that it has been licensed by several ma jor workstation vendors.

AVS is an active product: AVS3 is the latest release. This release has increased support
for distributed visualization in which different modules run on different processors. This
has been used for example in joint work by Cray and Stardent, to allow compute-intensive
simulation on a Cray and visualization on a Stardent workstation (Curington and Coutant,
1991).

The proprietary nature of AVS has encouraged the development of further visualization
systems, which offer a similar way of working but are intended to be freely available at least
in the educational community. A major product is apE from Ohio State University, one of
the US supercomputer centres (Dyer, 1990). This works in much the same way as AVS,
the user constructing a pipeline of processes. A large number of modules are provided with
the system, including a volume visualizer, and the user can incorporate external modules
as with AVS. The system is built to allow distributed processing, with modules connecting
via UNIX sockets.

Another product is Khoros from University of New Mexico (Rasure, 1991). This has its
roots more in image processing but is being used for general 2D data visualization. A
consortium (Khoros, 1991) has been established to distribute Khoros and carry out further
research. A stated aim is to provide Khoros free of charge to any organisation via network
access. Consortium members will have the privilege of early releases and certain rights to
develop enhancements and redistribute the software.

2.5 Data Management Systems

Visualization can be seen as a navigation process through a large database. It is clearly
important that the data be well organised and structured so as to make this navigation
efficient.

The traditional approach of using flat sequential files for data storage is inefficient in stor-
age and access. Commercial relational database systems such as INGRES and ORACLE
have been used by some groups of scientific users, but they are largely oriented to business
applications. There is a need to store and retrieve the data objects that naturally occur
in scientific computation, particularly multidimensional grids. Thus an important develop-
ment over the past few years has been the emergence of data management systems targetted
at the particular needs of the scientific computation community.

One of the first examples of a system based on a scientific data model was NASA’s Common
Data Format (CDF). Another example is the Hierarchical Data Format, or HDF, developed
at NCSA (NCSA, 1989). HDF defines a multi-object file format for transfer of graphical
and floating-point data between different systems. It allows, for example, a grid of data to
be stored together with scales, annotation, etc; slices through datasets can be extracted.
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Simple Fortran and C calling interfaces are provided, and so the package provides a simple
scientific data management system. Moreover, NCSA also supply some useful visualization
tools which accompany HDF. The software is in the public domain.

A good review of data management for scientific visualization is given by Carpenter (1991).
Another useful source is the report of a workshop at SIGGRAPH 90 (Treinish, 1991) which
includes a comparison of different systems.

2.6 Conclusions

AVS, apE and Khoros represent the current state of the art in scientific visunalization envi-
ronments. Their view of the world is dominated by data visualization: a source of data is
fed through a pipeline of processes reaching a display process at the end of the pipe. An
application module can be inserted as the data source, and some interaction allowed with
that module (Marshall et al, 1990), but the notion of a single linear pipeline from source to
sink persists.

This style of working does not necessarily reflect the exploratory nature of mathematical
modelling. Here the view of the world is dominated by the modelling processes, with
visualization as a set of windows onto these processes. These windows control aspects at
the different levels of the model (the physical, mathematical and discretised levels of Haber-
McNabb) and similarly provide views of the solution at different levels. Since the process is
an experimental one, recording of the data is essential so that experiments can be restarted
from intermediate points with change of parameters.

Thus it seems to us that data management must play a key role in visualization for math-
ematical modelling. It is significant that the existing dataflow visualization systems have
been developed separately from the data management systems described in the previous
section. Can an improved system be created by merging the two ideas?

3 Prototype Demonstrator for GRASPARC Project

3.1 Aims of GRASPARC

The aim of the GRASPARC project is to explore how best to provide an integrated en-
vironment for numerical simulation and visualization. This environment should support
interaction not just with the solution data, but also with the physical model, its mathe-
matical idealisation and the numerical solution. Data management is to be given special
attention so that a history of the computational process can be properly maintained.

This leads us to study a number of issues:

¢ Can we define a visualization reference model that clearly distinguishes the different
phases in problem solving, and identifies the interaction and data objects appropriate
to each phase?

¢ Can we build a system that offers these levels of interaction, and allows the scientist
to explore interactively throughout the solution process?
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¢ Are there applicable standards that will enhance the portability of the system?

¢ Can the system be implemented efficiently on modern computer architectures?

A first step in the GRASPARC project has been to build a prototype demonstrator which
can help resolve some of these issues.

3.2 Demonstrator Problem

A relatively simple mathematical modelling problem was chosen for the prototype demon-
strator: the motion of a particle in a potential field coupled to a heat bath (Cartling, 1987).
The physical problem is Brownian motion; its mathematical idealization is the Fokker-
Planck equation:

apP aP 1 dU 0P 0 KT 8°P
o "o m:z:*”(m”””zw)
P = P(z,v:t)

where:

P(z,v;t)is a probability density function, expressing the probability P that the
particle has a given position z and velocity v;

U(x) is the supplied potential (bistable); and
3 is a damping factor (strength of coupling to the heat bath).

The numerical formulation is the method of lines, in which derivatives in the spatial vari-
ables r and v are replaced by differences. and the resulting system of ordinary differential
equations solved by some numerical technique.

Given an initial distribution, the problem is to find out what happens over time. The po-
tential defines two minima. representing product and reactant states separated by a barrier,
across which thermally activated transitions take place. The damping factor § determines
the motion of the particle: for weak damping (small 8) the motion is deterministic, and for
strong damping (large ) stochastic. An aim is to ascertain the behaviour of the solution
P as [ varies.

The scientist will want to interact at a number of levels - for example:

¢ to modify the mathematical idealization by changing 8

¢ to control the numerical solution by changing the spatial discretization

To achieve this interaction, the visualization of the solution should be presented at the same
level. For control of the numerical solution, the results on the computational grid should be
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highlighted; for control of the mathematical idealization, the corresponding approximation
to the continuous solution is required.

For any given solution data set, the scientist will also wish to have different views of the
data - a further mode of interaction.

Finally the scientist will wish to compare runs with different values of 3, and different dis-
cretisations, and so data from each computational run must be stored. This gives effectively
a tree structure containing the computational history.

3.3 Building the Demonstrator

Graphics P————

Control Data Manager

User Interface Pe———

Computation  |jeeeesss

Messages Data

Figure 3 - GRASPARC Prototype Demonstrator
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The prototype which has been built with these aims in mind has a structure as shown
in Figure 3. Three separate modules implement computation, graphics and user interface
components. The modules operate concurrently and communicate with each other by a
message passing mechanism. Problem specification and solution data are held in a data
store.

The system has been implemented on a Silicon Graphics 4D/240 workstation, with display
management under control of the X Window System. Processes communicate via UNIX
sockets, and so may run on different machines.

The computation module is based on the SPRINT software (Berzins et al, 1989) for solution
of differential equations, developed at the University of Leeds in conjunction with Shell
Research Ltd, and now available through the NAG Library. At times requested by the user,
results are written to the data manager which is based on the HDF system described earlier.
Calls to HDF are included directly in the computation module.

The graphics module consists of software to display scalar fields of two variables - contour
plots and surface views - over a sequence of times. This software is written in terms of
PHIGS PLUS (ISO, 1990), and allows some simple direct interaction on the part of the
scientist, such as rotation of the surface.

The user interface module is based on a simple X toolkit called SUIT (Bowers and Brodlie,
1991), which aliows the building of form-type interfaces. One form allows the scientist to
enter control details for the computation; another, control details for the graphics.

The communications channel is implemented as a UNIX control process with socket con-
nections to the computation, graphics and user interface modules. This control process acts
as a switch for messages passed between the modules.

The system runs in the following way. On start-up, the user completes a form specifving
details of the computation: mesh-size for discretisation, times at which output is to be
reported, and so on. As the computation proceeds, messages are sent at each time step to
the user interface module which draws a computation tree showing the progress. This acts as
a monitor window on the computation. Immediately results are written to the data manager,
the scientist may call up the graphics module to display the solution. The computation can
be halted at any time, and restarted with different parameters. For example, the scientist
can restart the computation with a different start time and change the time interval between
time steps at which output is written. This is then displayed in the monitor window as a
new branch on the tree. Figure 4 illustrates a series of such branches which together form
a history tree structure. The scientist is able to trace the progress of the experiment easily.

4 Conclusions and Further Development

The prototype has achieved its aim of teasing out some of the difficult issues in developing
a visual environment for mathematical modelling.

It has provided a basic understanding which is now allowing us to develop a reference model
for problem solving, in which the physical, mathematical (or functional) and numerical
layers are cleanly distinguished.
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It has highlighted the importance of a data store as an intermediary between computation
and visualization, with the scientist separately controlling the two processes. The interface
to the data store becomes a key part of the system. Currently this is implemented directly
in terms of HDF. However HDF does not directly support the computation tree structure
that emerges in exploratory working, and so a small interface layer has been designed above
HDF. This gives an ‘Application Programming Interface’ to the data management functions
which supports the needs of a GRASPARC-like system. This will have the added advantage
of removing the direct dependency on HDF, and allowing the introduction of any standard
scientific data format, should that appear in the future.

The graphics module already makes use of a (draft) international standard, namely PHIGS
PLUS. The prototype includes just two simple techniques, but the graphics module will
eventually contain a range of techniques for displaying the various categories of fields de-
scribed in section 2. The use of PEX (Gaskins, 1991), an extension of X to support PhIGS
PLUS, will give the correct separation between graphics and display. This will allow the
inclusion of specialist hardware to act as a PEX server - this to be built by Quintek Ltd as
part of the project.

The user interface module will progress to the use of an established de facto standard toolkit
such as Motif (OSF, 1989).

However a major study required will be the form of interaction which is most useful to the
scientist. Some of the issues to be resolved are:

e What level of programmability is required? For example, current visualization systems
use the concept of a network editor to dynamically configure the visualization pipeline.
Can this idea be extended to the different style of working in GRASPARC?

¢ What control can usefully be given to the scientist over the numerical solution process
- do adaptive algorithms largely remove this need anyway?

The ultimate test of the GRASPARC system will be its usability to the scientist.
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The ESPRIT Project FOCUS

C. W. Cryer*
September 2, 1991

Abstract

FOCUS (Front-ends to Open and Closed User Systems) is an ES-
PRIT project (European Strategic Programme for Research and Devel-
opment in Information Technology) with seven industrial and academic
partners.

There is a growing demand for KBFEs (Knowledge-Based Front Ends)
which simplify and support the use of complex user systems. The
project’s main objective is to develop tools, techniques and methodolo-
gies for the construction of KBFEs for use in conjunction with “open”
computational systems (meaning libraries of algorithms with potentially
many applications, e.g. the NAG library) and “closed” systems (mean-
ing application packages relating to specific problem domains, e.g. sta-
tistical packages).

The project aims at the same time to provide the means of produc-
ing KBFEs and plans to start the industrialization of such systems. It
is also developing a harness which provides the framework for the in-
teraction between end users, the front-ends and the user system (i.e.
the libraries or application packages) which is considered as the back-
end. The combination of the framework and its KBFE components will
facilitate the provision of an enhanced human-computer interface and
will also potentially provide a more profound level of assistance than is
generally available at present.

*Institut fiir Numerische und Instrumentelle Mathematik, Westfalische Wilhelms-
Universitit, EinsteinstraBie 62, D-4400 Miinster, Germany
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1 The FOCUS Consortium

The FOCUS project began in December 1988 with four industrial partners,
four university partners, and one associate industrial partner. After two
years, two partners dropped out owing to difficulties unconnected with FO-
CUS. The project is being continued in the third and fourth years by a
consortium of seven partners in five European countries.

NAG Numerical Algorithms Group Ltd, Oxford, UK (Coordinator)

IC Imperial College of Science, Technology & Medicine, London, UK
(Departments of Computing and Mathematics)

LUTCHI Loughborough University, Loughborough, UK (LUTCHI Group)

InDeCon InDeCon Advanced Technology Inc., Athens, Greece

Solvay Solvay S.A., Brussels, Belgium

UPC Universitat Politecnica de Catalunya, Barcelona, Spain

WWU Westfalische Wilhelms-Universitdt, Miinster, West Germany

The total project involves 56 person years of effort over a four year period
at a iotal cost of 8 million ECUs.

2 Objectives

There is a wide and ever-growing range of application packages and libraries
now available to assist computer users in a huge variety of computing tasks
covering many subject areas. Some of these users write computer programs
in the traditional sense. and so are mainly interested in incorporating com-
putational units (e.g. from libraries) in their programs, but an increasing
number of users program in the higher-level languages of their chosen appli-
cation package(s) rather than in a general-purpose programming language.
Using the term “user system” to refer to both packages and libraries, it can
be seen that computer users rightly expect such systems to possess a num-
ber of qualities such as reliability, efficiency, flexibility, etc; there is also,
however, a discernible, growing demand for ease of use, particularly in the
initial learning stages, and for continuing support in use as the users gain
confidence and tackle more complex topics within their chosen systems. It is
considered that the most effective way to provide such assistance is through
KBFEs (Knowledge-Based Front-Ends) which contain explicitly represented
knowledge of the user system and its host environment. Existing user sys-
tems represent an enormous body of very complex and valuable knowledge
that is becoming increasingly difficult to access. End users of these systems
have to cope simultaneously with the intricacies of the software and with
the increasing complexity of the application domain problems. For these
systems, KBFEs can provide co-operative assistance to users, enabling them
to use the systems more successfully. At the same time the existing know-

213




how in the libraries and packages is preserved and their working life extended.

The two types of user systems mentioned above differ in that application
packages, such as statistical packages, relate to specific problem domains
and may thus be called “closed” systems, whereas libraries of algorithms,
such as the NAG library, have potentially many applications and may thus
be called “open” systems; hence the acronym FOCUS - Front-ends for Open
and Closed User Systems.

Members of the consortium had considerable previous experience of con-
structing front ends for both open and closed user systems. The primary
objective of the project was, and remains, to build upon this experience and
to develop KBS (Knowledge-Based Systems) and HCI (Human-Computer In-
terface) tools, techniques, and methodologies for the construction of KBFEs
for use with both open and closed user systems. As is customary in ESPRIT
projects, this objective was formulated in terms of “deliverables”, prescribed
technological goals, to be completed and delivered to the European Commis-
sion by specified dates. The combination of industrial and university partners
ensured the subsequent industrial and commercial exploitation of the results
of the project.

While the initial project objectives remain, it is now perceived that the results
of the project will be much more widely applicable than originally foreseen.
Firstly, open and closed user systems, as defined above, are merely two points
in a broad spectrum of user systems, to all of which the FOCUS technology
will be applicable. Secondly, the original applications were from scientific
areas. but the FOCUS technology has a potentially much broader range of
possible applications.

3 Summary of the FOCUS Work Programme

The FOCUS Work Programme is divided into seven Workpackages, one of
which, Workpackage 0, is concerned with organizational matters. The re-
maining six Workpackages, which make up the technical elements of the
programme, are associated with particular areas of research and develop-
ment, and are divided into several distinct tasks. They can be summarized
as follows:

Workpackage 1 Distribution and evaluation within the project of KBFEs
constructed by consortium members before the FOCUS project began.

Workpackage 2 Definition, implementation, documentation and develop-
ment of generic toolkits for the construction and support of KBFEs.

Workpackage 3 Application of experience and tools from Workpackages
1 and 2 to the development of alternative KBFE products based on
closed user systems (eg packages).
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Workpackage 4 Research and development into the application of KBFE
techniques to open user systems (e.g. libraries).

Workpackage 5 Development of a generic front-end harness within which
the systems can operate with a high degree of independence with re-
spect to both their operating environment and the kind of human-
computer interaction (HCI) techniques being adopted by the user.

Workpackage 6 Evaluation of user requirements and practices including
the development of appropriate methodologies for studying the activi-
ties of users and the effects that KBFE systems have on their perfor-
mance. A database of generic tests and background results is being
built up as part of this activity.

4 General Strategy

The workpackages outlined in the previous section summarize the topics cov-
ered by the work programme. However, in all phases of the project, user
evaluations take place and feedback is given to the developers of the KBFE
prototypes and tools. This feedback in turn motivates further development of
the toolkits and KBFEs. Hence, an iterative process has been set up, based
largely on the needs of the users (tool developers, tool users and KBFE
users) at each stage. This approach is designed to allow the evaluation and
validation of the technology being developed in the application environment
for which it was intended. Methodologies for these evaluations and feedback
mechanisms have been developed as an integral part of the project through
Workpackage 6.

As the prototype tools and systems stabilize, they undergo additional devel-
opment to bring them towards an exploitable state; commercial exploitation
of the software is to begin during the project. The KBFE implementations in-
corporate advanced human-computer interface techniques aimed at enhanc-
ing user interfaces for a broad range of computing environments, thereby
improving the portability of the systems as well as making them easier to
use.

Two further characteristics of the project deserve special mention. Firstly, in
order to achieve the desired flexibility, it was recognized from the start that
the project should have a unifying architecture. The FOCUS architecture, a
central theme of the project, is discussed in detail below.

Secondly, the development of the KBs is open-ended, in the sense that there
is no single restrictive concept of what is allowed, other than that the different
components must be compatible with the architecture (a very weak restric-
tion). This allows the development of different types of KBs and greatly
enhances the exploitability of the resulting products.
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5 The FOCUS Architecture

Any system built using FOCUS tools will usually cater for:

1. The End User
2. One or more Back-Ends (BEs)
3. One or more Knowledge-Based Modules (KBMs).

These must communicate with one another, and the communication links
must satisfy several conditions:

1. Communications with the end user must be user-friendly.
2. The communication protocols must be straightforward.
3. So far as possible, the system must be environment - independent.

The FOCUS architecture is evolving to meet these requirements, and its
current form is shown in Figure 1.

......................................

Layer Message

Dialogue
Control

BE

1/1 1/¢ ! Back-End

BE

Router , Manager BE

Figure 1: The Focus Architecture

The Front-End Harness (FEH) provides a versatile, portable framework en-
compassing interaction between the end user, the KBMs and the Back-End
Manager (BEM) (which manages interaction with one or more BEs). The
communications between the BEM and KBMs use a FOCUS Protocol. The
design allows the components to run on separate machines with an appro-
priate link.
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The FEH is written partly in C and partly in PROLOG, and the Presen-
tation Layer uses the “look and feel” of OSF/Motif. However, because of
the modular construction it is possible to rewrite the Presentation Layer in
OPENLOOK, for example. Indeed, the use of the eXtensible Virtual Toolkit
(XVT) is being investigated. This may allow the interface styles of a wide
range of host systems to be adopted.

The BEM is written also partly in C and partly in PROLOG. While the FEH
and the KBMs are concerned with the “whys” and “wherefores” of what the
end user is or should be doing, it is the BEM that take cares of the “how”,
in order to maintain the concept of interface separability within this archi-
tecture.

Version 1.0 of the FEH along with version 3.0 of the BEM are being used by
the most recent KBFEs, and evaluation of these latest versions is underway.
The FEH is recognised as the major component of the architecture and so
its development (in line with user requirements) has been accelerated. Work
in the first six months of the third year will concentrate on the specification,
design and implementation of version 2.0 of the FEH, building on the expe-
riences of the KBFE developers.

Although the components of the architecture have been developed on Sun
systems under Unix, the architecture is equally applicable to other environ-
ments. This has been shown by the development of some PC demonstrations
running under MS/DOS and Windows-3.

6 KBFEs under Development

KBFE Prototypes are being developed to act as test-beds for the architecture,
tools and evaluation strategies already developed. Moreover, the KBFEs cho-
sen for development are “real-world” and diverse. As such these KBFEs have
good exploitation potential. Some of the main KBFEs developed, or under
development, will now be described briefly; somewhat longer description of
two KBFEs then follow.

Routine Selector This KBFE has been developed to select an appropri-
ate routine from a library of routines given relevant knowledge by the
user. The library chosen was the NAG Fortran Library of nearly 1000
numerical and statistical routines. A working prototype exists which
not only selects routines, but provides help with that selection and
(sub)program generation. Currently, routine selection is not available
for the whole library, but is being expanded and further higher-level
interfaces for selected areas of the library are being investigated.

217




FAST This KBFE can be regarded as the successor to GLIMPSE (a sta-
tistical KBFE which was one of the state-of-the-art systems used by
the project for initial investigations.) A portion of GLIMPSE has been
re-implemented and restructured within the FOCUS architecture to
produce FAST, a much more modular and user-friendly system. These
improvements were a direct consequence of using the FOCUS archi-
tecture. FAST has already proved to be a good test of the architec-
ture and will be further developed towards the full functionality of the
GLIMPSE system.

SEPSOL This KBFE is aimed at helping experimenters (mainly chemists)
to design their experiments. The structure of SEPSOL is based on the
methodology used at Solvay to solve experimental design problems. It
is organised as a sequential set of activities: Data Acquisition - Design
Choice - Design Generation - Design Comparision - Result presentation.
A prototype is now running.

Meradis This KBFE is aimed at helping the safety engineer of a factory
in simulating the dispersion of a toxic gas after an accidental release.
The knowledge elicitation is currently in progress and will be followed
by the implementation of a prototype using the FOCUS architecture.

DOX Expert System for experimental design The system helps engi-
neers in the design and analysis of factorial and fractional factorial
designs with factors at two levels using economic and/or technical re-
strictions. It is equipped with help facilities and is expected to be an
alternative to Taguchi methods.

KAFTS Time Series Forecasting This expert system is able to model
time series, interacting with the user in areas where he/she has knowl-
edge. It also provides explanation in terms of implementation details
(e.g. data points required) but not in terms of statistical strategy. It
provides context sensitive help.

REGS Regression expert system The system evaluates the square me-
tre value of real state objects as a function of several explanatory vari-
ables. It is part of a more general system and performs “automatic”
selection of the best regression model with minimum user interaction.
It is integrated with data management capabilities and runs in a PC
environment.

KBFE for Stochastic Processes This system will test the re-usability of
components of the Routine Selector. A library of programs has been
identified and a KBFE is to be built using many of the components
from the Routine Selector.

All these KBFEs have been, or are being, built within the FOCUS architec-
ture using FOCUS tools, but with varied back-ends and domains of applica-
tion.
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7 The Routine Selector

The Routine Selector is a KBM for assisting users of the NAG FORTRAN
Library to select and use one of the library routines (at present almost one
thousand in number). For this application, a forward-chaining rule-based
expert system is suitable, as is shown in Figure 2.
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Figure 2: The Routine Selector KBM

The system was designed to build on the experience gained during imple-
mentation of the NAXPERT and KASTLE systems and in particular the
following points have been addressed:

e Truth Maintenance At any time the user is able to alter previously
entered data without compromising the consistency of the system out-
put.

e Interface Mode The user is able to switch at any time between free
text input of keywords and interaction with menus of suggested input.

| ¢ Context Sensitive Keywords The meaning of keywords entered by
the user depends on the context of the current problem.

e Keyword Abbreviation Free text abbreviations of keywords are al-
lowed as input.

¢ Explanation How, why and why not explanations are accommodated.

e Uncertainty is handled both in the specification of the knowledge
base and in the data input by the user.
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8 SEPSOL

SEPSOL is a knowledge-based system for experimental design developed by
SOLVAY. The purpose of SEPSOL is to replace the statistician in his role of
intermediary between the experimenter and the set of back-ends available to
build and analyze experimental designs.

The various stages in the design of an experiment are a sequential set of
activities. These activities are the basis of the structure of SEPSOL : the user
is invited to execute, in turn, each of the activities to design his experiment.
Five activities can be identified:

1. Data acquisition is concerned with eliciting as much information as
possible about the experimenter’s problem: description of the objec-
tives, the factors, the model, etc.

2. Design choice analyzes the data entered by the user, finds the list
of possible types of designs adapted to the given problem, and chooses
their sizes and parameters.

3. Design generation is concerned with generation of the possible de-
signs using appropriate Back-Ends.

4. Design comparison analyzes the different generated designs accord-
ing to a set of qualitative and quantitative criteria. It checks also which
of the possible designs correspond to the objectives of the experimenter.

5. Result presentation presents the possible designs and their relative
advantages to the experimenter. It helps the user to choose the design
best adapted to his problem.

Like the Routine Selector, SEPSOL has a KBM which controls the selection
of the experimental design. Like the Routine Selector, SEPSOL also interacts
with BEs, as shown in Figure 3.

9 Further Information

Current progress in the project is described in several public documents, e.g.:

Steve Hague and Ian Reid: FOCUS Second Annual Report: Summary of
Progress.
Document reference: FOCUS/NAG/8/8.2-P, January 1991.

E. Edmonds, E. McCaid, S.J. Hague and I. Reid: The FOCUS Project: A

Separable Architecture for KBFEs.
Document reference: FOCUS/NAG/6/7.2-P, August 1990.
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Figure 3: SEPSOL Back Ends and Back End Manager

Further details of the project may be obtained from any partner or by con-
tacting the project officials at the coordinating site:

Dr. Brian Ford. OBE
Dr. Steve Hague
Mr Jimmy Brown, CB

Address:

International Phone:

International facsimile:
Network: (JANET)

- Project Chairman
- Project Technical Coordinator
- Project Administrator

NAG Ltd
Wilkinson House
Jordan Hill Road
Oxford OX2 8DR
UKk

+44 865 511245

+44 865 311205

- BRIAN @ UK.CO.NAG (Dr. Ford)
STEVE @ UK.CO.NAG (Dr. Hague)
JIMMY @ UK.CO.NAG (Mr Brown)
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Using FOCUS Technology to Build Front Ends
S. J. Hague*
July, 1991
Abstract

FOCUS (Front-ends to Open and Closed User Systems) is an ESPRIT project, the pur-
pose of which is to provide tools, techniques and methodologies for the construction of
knowledge based front-ends (KBFEs). The paper is intended to be read in conjunc-
tion with other reports of FOCUS work elsewhere in the conference proceedings. The
particular theme of this paper is the manner in which several, diverse KBFE prototype
exercises are being documented; a description of a particular exercise is then given in
greater detail.

*The Numerical Algorithms Group Limited,
Wilkinson House, Jordan Hill Road,
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1 Introduction

This paper reports on an activity to develop useful technology which facilitates the con-
struction of front-end systems; that is, systems which serve as an interface between the
end user and one or more so-called “back-end” systems. Typically the back-end systems
are computational software packages or collections of library subprograms for solving cer-
tain application problems. If the front-end system incorporates reasoning components,
than it may be referred to as a knowledge based front-end. The KBFE technology activity
in question is being undertaken on a collective basis within a European Community ES-
PRIT project called FOCUS. A description of the project, in terms of its structure, aims
and general technical strategy, appears elsewhere in the proceedings of this conference.
In this paper we will concentrate on the application of FOCUS technology in building a
prototypical KBFE. We refer both to the general approach adopted for KBFE construc-
tion, and to a specific construction exercise, that happens to be an application of time
series analysis in the commercial sector. The description provided here is intended to be
complementary to other reports on FOCUS work given elsewhere in these proceedings;
each report is concentrating on some specific aspect of the project. There is, however, a
common underlying theme, namely the search for generic technology which, it is hoped,
can be successfully applied in diverse, practical circumstances where existing applications
software can usefully be supplemented by front-end HCI and reasoning components.

In section 2 of this paper, we provide a brief overview of the FOCUS architecture; that is,
the framework provided by FOCUS for the integration of HCI components, one or more
back-end systems, and optionally, knowledge-based modules which provide reasoning
capabilities. Sections 3 and 4 are devoted to the descriptive form (“template”) devised
within FOCUS to ensure that the several prototypical KBFE exercises being developed
as test-beds for the FOCUS technology are undertaken in a generally consistent manner.
The next section then presents an instance of the template, composed for a particular
KBFE exercise. Finally, we present some general observations and conclusions in section
6.

2 The FOCUS Architecture — A Brief Overview

Because a more detailed description of the FOCUS architecture appears in these pro-
ceedings, we confine the description of that architecture in this paper to a brief overview
in order to emphasize key points which relate to the following discussion of KBFE con-
struction exercises.

First, we should clarify what is meant by the term “architecture” in the context of
a project such as FOCUS. The purpose of the project is to develop tools, techniques
and methodologies for the construction of (knowledge-based) Front-Ends (FEs) existing
software libraries and packages, the so-called Back-Ends in FOCUS terminology. The
term “architecture” in the FOCUS sense is not intended to suggest a rigid and detailed
internal design of a specific software system but instead conveys the notion of a framework
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Figure 1: Integration of the FOCUS Components

for uniting major software components, some of which (typically the Back-End) exists,
and other (e.g. knowledge-based components) to be developed with the aid of appropriate
FOCUS toolkits. The framework (or architecture) is specific to the extent that it defines
the location of those components to one apother in terms of communication, and it
also incorporates a protocol which governs the form of message passing between those
components.

The Front-End Harness, as indicated in the diagram below, is a FOCUS-developed com-
ponent which serves as a programmable HCI communications hub (both with the end
user and between software components) within the architecture. The internal form of the
other components (the Back-End(s) and the knowledge-based modules) is of no direct
significance to the conceptual architecture, the only requirements for integration into a
FOCUS framework is that those components conform directly or through interface layers
to the FOCUS message passing protocol. The various components involved need not
all be on the same host system so it is fair to summarise the FOCUS architecture is
providing a distributed and separable framework for constructing front-end systems.

In simplified diagrammatic form the FOCUS architecture can be summarised thus:

where the terms FEH, BEM, BE, KBM stands for Front-End Harness, Back-End Man-
ager, Back-End and Knowledge-Based Modules respectively. As the diagram indicates,
the use of FEH, BEM and KBM are supported by their respective FOCUS-provided
toolkits. Further details of these toolkits are available from the Project Co-ordinator
upon request.
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3 Describing a KBFE ~ The General Approach

As the paper by Colin Cryer (elsewhere in these proceedings) indicates, several KBFEs are
being designed, developed and evaluated in the FOCUS project, as prototype exercises
in the use of the emerging FOCUS technology. The set of prototype KBFEs chosen
relate to application areas which are diverse in nature and have real-world relevance,
thus providing an effective, collective test-bed for the genericity of that technology, i.e.
the FOCUS tools, architecture and evaluation strategies.

To ensure consistency of treatment, each of the KBFE prototypes is described in a uni-
form way through the use of a descriptive template, the form of which has been developed
within the FOCUS project. For each KBFE developed, in development or planned within
FOCUS, a description based on the template is initiated and then periodically updated
as the particular KBFE exercise progresses. The template contains seven sections, viz;

. global problem description

. problem definition

. actors description

. problem solution

. purpose of the KBFE

. industrial issues of the KBFE
. contact information.

~N MO AW N =

A full copy of the KBFE prototype descriptive template appears as section 4 of this
paper. To amplify the above section summary a little, however, it is worth noting that
the first four sections refer essentially to some industrially relevant, existing real-world
problem area (in which no KBFE is presumably available). These sections must set the
scene in describing the overall domain of application in question, why some problem or
class of problems arise, to what extent existing Back-Ends application software addresses
that problem or class of problems. They must also describe who would be involved in
posing and solving the problem(s), and how a KBFE could be of use. Sections 5 and 6
deal with the design of the KBFE and its development, both within the FOCUS project
and potentially in subsequent commercial exploitation, where relevant. The final section
names the individuals within the project who are to serve as points of contact.

With regard to the participants in each KBFE prototype exercise, it is also worth remark-
ing on the so-called “actors” (section 3 of the template), using their own problem-specific
terminology. The term “actors” is intended to embrace primarily three groups of indi-
viduals:

- a representative sub-group of Problem Posers; these are the potential end-users of the

resulting KBFE
- experts in the problem domain (the template uses the abbreviation “Exp-Dom” to refer

to these)
- experts in the use of the one or more Back-Ends involved (“Exp-BE").
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These primary participants or “actors” in each KBFE exercise are likely to be assisted
by:

- a knowledge engineer (KE) who assists the Problem Posers and Experts to formalize
their knowledge, and supervised by

- a Project Manager (PM) responsible for the general coordination of the specific KBFE
exercise.

The emergence of the KBFE descriptive template, and its instantiation in the case of each
KBFE prototype undertaken, is characteristic of the overall FOCUS approach, namely
a search for the extent to which generic technology and methodology can be developed
to support the construction of diverse and realistic front-ends. The template itself has
been refined on several occasions during the lifetime of the project,as more experience
has been gained in constructing KBFEs; the essence of that cummulative experience is
then distilled into an updated and stabilised form of the template.

4 The KBFE Descriptive Template

The following is a largely verbatim extract form current FOCUS internal technology
guidelines. It describes the generic form to which all FOCUS KBFE constructors must
confirm when undertaking their exercise. The style used is that of a questionnaire in
which the KBFE constructor is asked to provide information to a series of requests for
information. The various sections of the questionnaire are labelled A to G here, in order
to avoid confusion with the sections of this paper:

A. Global problem description
A.l

Give a description of the application domain and a description of the class of problems
that the final KBFE should solve. If the KBFE is intended to deal with various classes
of problems, each of these should be described separately.

Supervisor: Exp-Dom

People concerned: Problem-Poser, Exp-BE

A2

Give the description of a specific example problem which should be solved by the final
KBFE and express it in words of the Problem Poser (End User of the final KBFE). This
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example should be representative of the most common problems.

Supervisor: Problem-Poser

B. Problem definition
B.1
Describe the class of problems in terms of:

¢ Initial state, including the list of actors (classified into categories e.g. Problem-
Poser, Expert, Back-End)

o Goal state

B.2

Dlustrate the above description with a specific example.
Supervisor: Exp-Dom

People concerned: KE, Exp-BE, Problem-Poser

C. Description of the Actors

The actors involved in the problem resolution will be described here. The way in which
in each actor should be described depends upon his or her role in the problem resolution.
The information needed is given for each category: Problem-Posers, Experts and Back-
Ends.

C.1 Description of the Problem-Posers

The purpose of this section is to describe the potential End-Users of the future KBFE.
In some applications, it may be necessary to classify them in sub-categories especially
when:

o their knowledge of the domain and of the BE are very dissimilar

o the KBFE is aimed to solve a large range of problems
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For each class, the following information should be given to describe the potential End-

Users:

e Education
o Knowledge (and lack of knowledge):

— in their domain (physics in our example)
— in the application domain (statistics in our example)
— in the use and functionalities of the Back-End with the frequency of back-end

usage

e Set of operations that users can perform

Supervisor: Problem-Poser
People concerned: Exp-BE, Exp-Dom, KE

C.2 Description of the Experts

For each expert whose knowledge should be included in the KBFE, the information

needed is:

e Knowledge:

— in the Problem-Posers’ domain
— in the application domain
— in the use and functionalities of the Back-End

o Set of operation he can perform

Supervisor: KE
People concerned: Exp-Dom, Exp-BE

C.3 Description of the Back-Ends

For each Back-End:

o Type of the BE: (library, command driven program, batch program, data base ...)
o Technical description of the inputs and outputs

o List of the BE functionalities

Supervisor: Exp-BE
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D. Problem Solution
D.1 General Resolution Process

Give the general resolution process for the class of problems to be solved by the final
KBFE. Structure the complete problem into a sequence of subproblems and briefly ex-
plain each of them. There is no need to described the complete tree of operations. For
each step of the resolution, state which actors are involved. If the KBFE is intended
to solve different classes of problems, the resolution process should be given for each of
them.

D.2 IMustration

Nllustrate by giving the resolution process for the concrete example presented in A.l.

Supervisor: KE
People concerned: Exp-Dom. Exp-BE

E. Purpose of the KBFE

Give the list of requirements for the KBFE according to:

o the difficulties and lack of knowledge of the Problem-Poser
e role played by the expert in the resolution process

¢ wishes of the potential End-Users for the user interface

o characteristics of the BEs

Supervisor: KE
People concerned: Problem-Poser, Exp-dom, Exp-BE

F. Industrial issues of the KBFE

This Section is necessary to check the industrial relevancy of the applications developed
within FOCUS. Its aim is to precisely describe the environment in which the KBFE will
be developed and the project plan for the KBFE.

229




N

F.1 Who is going to develop the KBFE?

Name(s) of the partner(s) and of all the persons who will be involved in the development
of the KBFE with their role and working experience (Expert, Knowledge engineer...)

F.2 Which tools are available for the implementation?

FOCUS tools and other tools.

F.3 On which hardware are the BE and KBFE intended to run?

F.4 Is there an industrial interest and economical payoff in developing a
KBFE?

¢ number of potential users, expected frequency of use, strategic importance for the
Company
e are there similar systems available on the market?

e is there any economical return expected?

F.5 Give your internal project plan

List the successive steps you intend to follow in the developments of the KBFE.

¢ How do you plan to acquire the knowledge?

o Are the BEs ready to run on the desired hardware?

¢ Do you plan to develop the KBFE in different stages?

e Which are the objectives of the first prototype?

¢ Do you have End-Users available to test the successive prototypes?

e Which are your deadlines for the differeat steps of the development? Give a Gantt
Chart.

o Give your evaluation plan as agreed with the FOCUS evaluation team and indicate
its current status in the required form (as stated in the appropriate FOCUS project
note).

Supervisor: Project Manager
People concerned: KE
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G. Contact

Give details of a contact with whom problems can be raised.

5 Describing a KBFE — An Example

We now present an instance of a FOCUS KBFE description, composed along the general
guidelines of section 4, the descriptive template. The description given here is a slightly
abridged and adapted version of an actual KBFE description document; the changes made
in this version relate only to the omission of certain specific details which are not directly
relevant to the overall theme of this paper. The KBFE in question provides assistance
in the use of univariate time series modelling and forecasting using the approach of Box
and Jenkins. It is intended for use in banking and related financial applications. Further
details of the KBFE can be obtained upon request to the FOCUS Project Co-ardinator.
Though it serves as a worthwhile, practical example of the efforts being made by the
FOCUS project to validate its emerging technology in diverse, real-world applications
any one of the several other KBFE prototype building projects could also have served in
an examplary role — the point is that FOCUS is endeavouring to apply generic technology
in a consistent way. The first subsection below presents the global problem context for
the chosen KBFE, and the subsequent subsections follow (except where abridged, as
explained above) the outline described in section 4 of this paper.

5.1 Global Problem Description
5.1.1 Description

Box and Jenkins methodology for the evaluation of time dependent statistical data has
several levels of sophistication: Univariate, Intervention analysis, transfer function and
multivariate models. In this application, attention is focussed in the first level i.e uni-
variate time series models.

A typical end-user may have to in obtain a forecast for a number of time series which
are relevant to his or her organization. For each relevant time series, it will be necessary
to fit to the data, a model belonging to the general class of Seasonal AutoRegressive
Integrated Moving Average (SARIMA) models as described by Box and Jenkins. This
will require and iterative strategy of model identification, model estimation and model
validation or diagnostic checking.

Once a reasonable model has been obtained, it can hopefully be used to generate the
desirable forecasts.

One could also consider the possibility of controlling the forecast errors by means of
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statistical control in order to decide when the model has to be modified.

5.1.2 Example

Suppose that a banking organization (Bank X) has 100 branches or agencies and in each
agency there are 10 relevant time series to be forecasted : total client’s deposits, total
deposits of long-term kind, etc.

Bank X wants, once per year, to get the forecasted values of each of its one hundred
branches for each of the ten categories. That means 1000 time series for the next year.
Then, even if Bank X has an expert in Box and Jenkins methodology, solving the problem
by using directly available statistical software will require considerable effort.

Therefore Bank X will prefer to use a KBFE, which encapsulates the expertise of an in

house expert, and provides reasonable forecasts for a high percentage (if not all) of the
time series.

5.2 Problem Definition
5.2.1 General Problem

Initial State:

The data:

Probably stated in a data base with possibilities of updating, modifying,
deleting, extracting by different criteria, etc.

For each time series, a minimum of data equal to 3 times the seasonal in
question (e.g. one year) is required.

The experts:

The end user of the KBFE, when constructed, will probably be competent
and perhaps even an expert in the domain from which the time series comes
(banking, electricity consumption,etc.)

Also an expert in the Box-Jenkins methodology, at least in univariate time
series modelling is required.

The Back-end:
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There is a number of available statistical software packages available to solve
the problem, e.g. GENSTAT, SCA, X-11, X-11 ARIMA.

Goal State:

The goal is to satisfy the end user. In this case, this means presenting “good” forecasts for
each time series, in a short period of time together with some measure of error, standard
deviation of the predicted values, confidence intervals, etc.

The final results should be both in graphic and list form.

Also, in the case that the KBFE has not been able to find an adequate model for a
particular time series, this should be brought to the attention of the end user together
with the reasons why this has happened.

Now we list the operational steps (Subproblems) in achieving the above goal.

For each subproblem, its initial state, sub-goal state and required actions are identified:

Sub-problem 1: Get the data

Initial state:

The data of the time series to be modelled are stored in the database. If not
tell the user to enter these time series.

Goal state:
The data are in a file.
List of actions:

o Ask the user which time series he wants to model.

Locate the time series in the database.

Extract the time series.

Verify this is the requested time series.

e Store in an appropriate file.

Sub-problem 2: Explory data analysis
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Initial State:
The data of the particular time series is in a file.

Goal State:

The same data after corrections for obvious inconsistencies are stored in a file
(possibly the same).

List of actions:

e Present several plots to the end-user.
o Ask the user for corrections.
e Do the corrections.

» Store the data (possibly transformed).

Sub-problem 3: Model identification (Note: this phase of the KBFE requires
an expertise in Box-Jenkins (BJ) methodology and in the use of one or more
of the Back-Ends to be used).

Initial State:

Data and its seasonality.
Goal State:

At least one tentative SARIMA model for this time series.
List of actions:

e If the end-user is not an expert in BJ methods, then run the Back-End.
e With or without user’s interaction, obtain at least one tentative SARIMA model.

e Store the necessary information that will be necessary for estimation.

Sub-problem 4: Model estimation (Note: as per sub-problem 3).

Initial State:

234




The model is identified in the previous subproblem and the data.

Goal State:

The estimated values of the model’s parameters and relevant information
for diagnostic checking (t-values of the parameters, correlation matrix of the
estimates, conditioning of this matrix, roots of the AR and MA polynomials,
residual mean square, the residuals, etc.).

List of actions:

Prepare the input for the back-end.
Run the back-end (estimation).
Extract all relevant information.

Store this information.

Sub-problem 5: Diagnostic checking (Notes: this requires BJ expertise)

Initial State:

The stored relevant information from above.

Goal State:

Accept or reject the model.

List of actions:

Apply the expertise of the BJ Expert to the relevant information.
If the model is accepted, then go to Subproblem S7.
If the model is rejected then go to Subproblem S6.

Limit the possible loops to a maximum of 2 or 3 interactions.

Sub-problem 6: Model re-specification

Initial State:
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A model that has been rejected in Sub-problem 5, plus the residuals of the
model, and the BE.

Goal State:
A new mode] for Sub-problem 5.
List of actions:

e Prepare input for running the BE with the residuals.
e Run the BE.
e Obtain a new model.

Add it to the model of the series.

Sub-problem 7: Forecasting

Initial State:

The data and an acceptable SARIMA model. Also origin of forecast and
number of forecast, etc.

Goal State:

The desired number of forecasted future values, with their standard deviation
or confidence interval in graphic and in list form.

List of actions:

e Prepare input for the back-end.
o Run the back-end (forecast).

o Present the results to the user.

5.2.2 Specific example

In the interests of brevity, details of the specific example, as required by the generic
template, have been omitted here, but are present in the actual description for this
KBFE.
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5.3 Description of the actors
5.3.1 Problem Posers

In the context of this KBFE exercise, the problem-posers can be of two possible types,
each with different knowledge depending on the delegation policy of the bank in question.

1. Managerial Personnel e.g. Manager in charge of planning.

2. Administrators. e.g. clerk in above manager’s department.

Managerial personnel presumably have a greater overall understanding of the problem
domain, namely the trends in banking practices expressed as time series. However it, may
be that the administrators are more familiar with the use of computers and computer
software. Neither is likely to have any detailed knowledge of a specific back-end nor of
the statistical application domain (time series analysis). It is assumed that the general
educational level of Managerial staff is greater than that of administrative staff, although
this may also depend on age.

5.3.2 Experts

It is apparent that our KBFE construction exercise needs expertise from at least three
difference sources:

- a problem domain (banking) expert

— an expert in time series analysis

- an “expert”, i.e. a competent user, of a computationally capable statistical back-end
package.

It is probably unlikely, given the application domain in question, that a single individual
will be capable of fulfilling all three roles. a more pertinent question would be whether or
not the second and third of the experts listed above would or could be the same person.
The second-listed person, typically a professional statistician specializing in time series
analysis, may be familiar with a specific back-end package, e.g. SCA, but the bank in
question may have chosen some other package, Genstat, for example. The difficulty that
the statistical expert might have in translating his experience of use of one Back-end to
another, should not be under-estimated. It is sensible, therefore, to postulate that there
would be three distinct individuals in supplying primary sources of expertise.

A further source of expertise (apart from the use of FOCUS technology, that is) might
also be required, depending on the volume and organisation of the data involved. The
statistical Back-End may or may not possess its own data management system, so it would
be prudent to assume that multiple Back-Ends may be involved, one of which providing
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a database facility. If that is so, that the involvement of a database person, who may or
may not be distinct from those “experts” already identified, should be assumed.

The table below summarises the likely expertise level of the potential (human) “actors”
in the KBFE exercise, using a scale of 3 to 0 for high, intermediate, low, zero expertise
in the indicated areas of competence:

Banking  Time Series Use of Use of
Principles Analysis BE(stats) BE(db)

Bank Manager 3 1-0 0 1-0
Bank Administrator 2-1 0 1-0 1-0
Time Series Analyst 1-0 3 3-0 1-0
Back-End Expert 1-0 2-1 3 2-0
Data Base Expert 1-0 1-0 1-0 3

For example, the expert in the use of a statistical Back-End is likely to have little or no
detailed appreciation of relevant banking principles, probably has some appreciation of
TSA techniques, is by definition judged to be highly competent in one or more specific
Back-Ends, and should have some appreciation of data base issues, though that might
not be the case.

An aside: it is important to the success of any KBFE exercise that such a “matrix of
competence” is recognised, for it is the KBFE, developed and supported by FOCUS
technology, that is acting as an integrator of sources of competence that presumably
have not been (successfully) brought together previously.

5.3.3 Description of the Back-Ends

A typical collection of Back-Ends is given below:

1. Idaut: a batch program which automatically identifies a tentative model of a time
series for use in the Model building stage of the Box-Jenkins methodology. Data
files:

2. Input: seasonality, time series
3. Outputs: d, D, P, p, q, Q, QO (Statistical parameters).

4. SCA: a general statistical package which can perform time series analysis and can
be used in both bath and command mode.

Inputs: SCA command or command file.
Outputs: Varials.

5. Genstat: is a batch driver general statistical package.
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Inputs: Genstat command program.
Outputs: Data files.

6. Data base: e.g. Oracle on Sun.

5.4 Problem Solution

See §5.2.1

5.5 Purposes of KBFE

1. To provide automatic forecasting of a given time series interacting with the user only
in areas where the user is knowledgeable ie in this case:

e source of the data

¢ interface requirements
2. To provide explanation only in terms of implementation details such as:

“unsufficial data points to make a forecast; accurate model could not be
identified”

but not in terms of statistical strategy, as this would be meaningless to the typical end
user in the banking context.

3. To provide context sensitive help-context, i.e. meaningful in terms that the end user
can understand.

5.6 Industrial Issues
5.6.1 Personnel

For the KBFE construction exercise in question, three “experts” have been identified,
covering five domains of competence; time series analysis, data base use, and use of three
back-end packages — Genstat, SCA and Idaut. Banking expertise is being provided by
sources outside the FOCUS project. Other technical expertise, in the use of the Front-
End Harness and KBM, is drawn from elsewhere in the project.
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5.6.2 Project Plan

The plan for this particular KBFE construction exercise deals with several specific issues,
including:

~ knowledge acquisition; being acquired by the interview method

~ choice of Back-Ends both in terms of functionality offered, and the host systems on
which they are available

~ KBFE development; to be undertaken in stages, with the first version being produced
within four month, an evaluation period of two and half months, followed by a second,
enhanced version, intended to be the “deliverable” required by the project’s contractual
commitments. That second version was planned to last three months, with a further
month for additional refinement. Thus, for this particular KBFE prototype, the exercise
is expected to last around nine to ten months.

~ landmark for KBFE prototype: the aim of the initial development is to demonstrate
the functionality of the envisaged final version and to indicate, if not actually implement,
several possible presentation forms.

- identification of end user sites, including banks and other commercial organisations,
some of which to participate in the evaluation/assessment plan (see below).

~ the evaluation/assessment plan itself which requires that a stage-by-stage monitoring
of the KBFE as it is developed. The plan is devised in consultation with evaluation
specialists operating within the appropriate work package within the FOCUS package.

6 Conclusions

It is premature to draw firm conclusions at this stage of the FOCUS project; though sev-
eral operational KBFE prototypes exists and are available for demonstration, and indeed
for evaluation, there is as yet, insufficient evidence to make claims of substantial success.
However, participants in, and observers of, the FOCUS project are prepared to attest to
their growing belief that it is indeed possible to develop worthwhile generic technology for
front-end construction, and that the scope of applicability of that technology is perhaps
even greater than originally envisaged. The KBFE exercise described in some detail in
section 5 is typical of the progress now being made within the project, as underlying tools
and technologies stabilise. That particular exercise is still in the construction phase but
others have undergoing intensive evaluation. Preliminary reports from those evaluation
activities serve to bolster the confidence expressed below.
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Transcript editing, a simple user interface
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Abstract

The simplest user interface to write is one where the program reads
the input data, computes, and then prints the output data. Such a
program is often awkward to use interactively. We demonstrate a tool,
the transcript editor, and programming methods that make it radically
easier to interact with read-compute-print programs. An algebraic
calculator program is shown as an example; a version of Matlab has
also been implemented.

1 Transcript editing

A transcript is simply the combination of the input and output data of an
interactive session, interleaved in the natural way. For example, the input
might be Matlab commands and the output Matlab responses. A transcript
editor is similar to a text editor. It lets the user change the input part
of a transcript, for example change an earlier command. The editor then
cooperates with the application program to update the output part of the
transcript so as to make it consistent with the new input. This incremental
input-output connection has the obvious function of correcting errors, but
it also manages dynamic, pop-up information such as menus and help.
Although more sophisticated incremental processing methods could be
used, the method that best suits conventional programming style is a com-
bination of reversal (undoing) and reprocessing (redoing). When the user
changes some input, the editor asks the application program to reverse, or
undo, the processing of the changed input. The application program re-
turns to a state that was in effect at some point before the changed input.
Starting from that point the editor resubmits the input to the application
program. The editor puts the new output into the transcript, discards the
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invalid part of the old output, and updates the screen to show the new state
of the transcript.

For large computations, the undo/redo method can be made efficient by
structuring the transcript as a hypertext, a directed acyclic graph of text
blocks.

Archer et al [1] use script editing as a formal description of undo/redo
systems, where the term script means just the input data. However, they
suggest that it would be “too powerful and confusing for general use”. Our
approach [2,3,4] uses transcript (input-output) editing as a general interac-
tion tool. This tool supports the usual dialogue forms and at the same time
provides implicit and global undo/redo functions. We feel that it is suitable
for most interactive situations where inputs are textual.

2 Application programming

Writing application programs to run under a transcript editor resembles
batch programming more than interactive programming. The form and
order of the input data can be fixed, since the editor provides random access
to any part of the input at any time. If the program finds an error in the
input, it need only emit an error message and stop (wait for a reversal
request) - no other error-correction or input-editing dialogues are needed.
Such error messages can easily be made into a context-sensitive pop-up help
facility.

Interactive programs often provide special user commands to output se-
lected results, whereas under a transcript editor, output can be produced in
natural batches and analyzed with the editor’s scrolling and string searching
functions.

When the script is changed, the state to which the application program
reverses does not have to be immediately before the point of change - any
earlier position will do. Thus, the programmer can select how coarse or
fine the reversal and reprocessing grains will be. For example, it is trivial
to reverse the whole computation and just start over, whatever part of the
input the user changes. Response speed is increased if the program reverses
to, and recomputes from, some intermediate checkpoint state, but the grain
size has no other effect on the user -~ the amount of typing and the mental
effort stay the same.
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3 Implementations

We think of the application program as parsing the input data, whether
the inputs are commands, menu selections, or replies to questions posed by
the program. Typically, the program will perform its computations during
parsing, for example using a stack to evaluate an expression entered by the
user. When the user changes some input, the parsing and computation must
be reversed to an earlier state.

Using the freedom to choose the reversal grains, as noted in the preceding
section, we have found simple methods for reversing parsing and parser-
driven computation [4]. A bottom-up parser can be made reversible either
with a grammar transformation or with a modified parsing algorithm; in
both methods the parse stack is used as a history list. A top-down, recursive
descent parser can use the procedure call stack as a history list. Recursive
descent parsing is easy to reverse in a language with exception handling,
for example Ada. In other languages, exceptions can be simulated with
moderate effort. The reversible parsing methods extend to the reversal of
any computation on stacks. This covers most of the operations of a typical
interpreter/compiler: symbol tables, generated code, and intermediate result
stacks.

The calculator program we demonstrate is written in Turbo Pascal as
a recursive descent interpreter, using simulated exceptions. The Matlab
implementation [3,4] used an LALR(1) bottom-up parser produced by the
HLP parser generator [5).

We have implemented transcript editors for various systems and lan-
guages. The one we demonstrate is written in Turbo Pascal. It is demon-
strated on a Macintosh, but it is fairly portable. A transcript editor in C++
on PC’s is nearing completion. On VAX/VMS we have an extension of the
DEC EVE editor; this transcript editor runs the application programs in
subprocesses, so the applications can be written in any programming lan-
guage. In contrast, the Macintosh and PC editors must be linked to the
application program, which will usually by written in the same language as
the editor (Pascal or C++).

A transcript editor can also be used with existing non-reversible pro-
grams, although the global consistency of the transcript is not ensured. Our
VAX/VMS editor has been used extensively with the Macsyma program,
for example.
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4 Conclusion

Transcript editing is a simple route to comfortable interaction with conven-
tional read-write statements. Documentation and reproducibility are basic
requirements of scientific computation. Transcript editing supports them by
storing all user inputs in their final form and ensuring that output is also
up to date, rather like a ‘make’ facility.

Whatever tortuous path of interactive trial and error is followed, the
edited transcript remains a clear and consistent record of the computation.
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Introduction

We will consider various design issues involved in the eventual development of an AUTOMATED NUMERICAL
ANALYST. As a platform for this development we will use the AUTOMATED PROGRAMMER, a robust system
that automates a great deal of the mundane details of conventional scientific, engineering, and mathematical appli-
cations programming (1, 2). We will extend the framework of strategies that we have previously developed for the
AUTOMATED PROGRAMMER to the problem-specific areas encompassed by an AUTOMATED NUMERICAL
ANALYST.

The AUTOMATED PROGRAMMER is a language, or more precisely, a language system, in which programming
can be avoided completely in some cases, and considerably moderated in other cases. This is accomplished by
the conceptually simple device of accepting programs (executable modules) which are entered using conventional
(pre-computer) textbook two-dimensional mathematical notation and control structures, characterized by a flexible
syntax, which mimic technical English. If the problem solver has a well-formulated statement of a computational
algorithm expressed in mathematical notation and technical English, such as can be found in numerical analysis
texts, then the AUTOMATED PROGRAMMER system minimizes the transformation to an executable program. It
supports desirable attributes for enhancing documentation, error avoidance mainuinability, and verifiability. Since it
also decreases programming time (3), this approach tends 10 substantially ameliorate the programming requirements
for scientific problem solving.

Figure 1
Forn=3by3t9anda=2ton’—2and = 2(2)nread r,g,pu, if £ < p then
s n n -
. VA £ 5 Y feos v+ amis)

iaﬂ =/ / =1 j=1 - dz dy
LOG, r + TAN-! =&,
i “Aedt

e Can

and print a, 8,n,tas else y = e*4° — SIN?4 COS #+ 1 — TANZ2 | print 8, y. end.
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This point of view is illustrated in Figure 1, an example of a definite integral. It is not only a problem solution
specification expressed in conventional mathematical notation, it is also an executable document acceptable as
input by the AUTOMATED PROGRAMMER. In contrast, the programming of the inlegrand using a conventional
programming language, ¢.g., FORTRAN, requires considerable attention to syntactical detail and is a non-trivial
programming effort.

The AUTOMATED PROGRAMMER has been designed 1o minimize the linguistic difference between the solution
specification, expressed in a notation and syntax “natural” 10 the application area, and the executable program
module which is computationally equivalent to the specification. The resulting program can be considered to be
“self-documenting” in the sense that the program representation is largely intelligible to other practitioners in the
application field who may have either no or limited knowledge of the few specific programming artifices that may
be present in the document.

Automating Numerical Analysis and Computation

Currently, when referencing the numerical analysis literature or seeking to use the extensive mathematical software
libraries which are available, computer users are confronted with massive documentation of the elaborate criteria
necessary to make an appropriate choice of an algorithm or software procedure. Available software routines usually
require the user to conform to complex and extensive parameter passing protocols and to code, in some program-
ming language, a great deal of ancillary information in order to properly invoke the selected routine. With the
AUTOMATED PROGRAMMER we have already demonstrated that this latter burden is unnecessary for scientific
application programming.

Figure 2

Gauss-Legendre Quadrature - Fifteen point formula with unequal spacing
: —_ _Tsin2r

function f(z) = m

22 = 0.20119409, z3 = 0.39415135, z4 = 0.57097217, 25 = 0.72441773, z¢ = 0.84820658, z7 = 0.93727339,
zs = 0.98799252.

wy = 0.20257824, w2 = 0.19843149, w3 = 0.18616100, w4 = 0.16626921, ws = 0.13957068,
we = 0.10715922, wr = 0.07036605, ws = 0.03075324.

a=0, b=, c=”;“, d=%’-9-.

integral = c[wl fay+y {w,-( f(d+cz)+ f(d - czj))}]. print integral.
j=2

Consider the task of finding the value of a definite integral of a well behaved function by one of the several available
numerical integration methods. One could peruse a textbook to find a suitable method and then construct a program.
For example, Figure 2 is an AUTOMATED PROGRAMMER executable specification (program) to integrate an
integrand represented by the function f. Presumably, f(z) would normally be defined in a main program which
will call the integration subprogram. An altemate approach would be to use a mathematical library routine which is
available from public domain or commercial vendors. Typically, this might involve a subroutine call as illustrated
in Figure 3.

Figure 3

Integration using NAG Library routine DO1AJF

origin 1.

Extemal subroutine DO1AJF (function, ,,,,,, I,int, int I,int, int).
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function f(z) = 7’1&:‘(‘;—’)2 a=0, b=, ecabs =0, erel = 1074,

result = 0, abserr = 9999, ifail = 0. lw = 800, liw = & 4 2. dimension wgoo, iw1o2-
call DO1AJF (f, a, b, eabs, erel, result, abserr, w, Iw, iw, liw, ifail).
print “Result = ", result, “Absolute error = ”, abserr.

While using a library module eliminates the need for the user to program a standard routine, it does require a detailed
rigorous protocol to specify programming attributes for each parameter. This usually results in a substantial amount
of “boiler plate” preceding the actual invocation of the library subprogram. Nevertheless, this approach does not
relieve the user from programming, in detail, the function (integrand), e.g., the first actual parameter of the called
routine in Figure 3.

Very recently, there has been interest in researching and developing systems that would ease the user’s task of
selecting and monitoring appropriate numerical solutions to problems typically covered by conventional numerical
computation methodology. Several investigators have approached segments of this topic from the viewpoint of
expert system development (5, 6). Others have emphasized the development of knowledge bases that could be
used with currently available libraries of numerical procedures (7). Workers in this field, however, have adopted
varying emphases toward researching and developing an appropriate man-machine interface for communication and
interaction between user and the computer software system.

The High-Level Interface

We believe that the development of an appropriate user interface is crucial for ensuring the pragmatic feasibility
of any system whose goal is to automate a substantial part (or all) of the decision processes involved in scientific
computation. Regardiess of the degree of expertise and the extent of the knowledge base of any of the proposed
systems, their practical utility would be severely limited if their user interface were not sufficiently robust to
encompass a wide spectrum of users ranging from the novice engineer, untutored in the subtle aspects of the craft
of numerical analysis, to the highly sophisticated and expert applied mathematician who comes prepared to his task
with an armada of knowledge and experience.

Since the domain of discussion is applied mathematics, we suggest that an acceptable user interface must have
the capability of understanding, i.e., recognizing, mathematical input expressed in conventional (textbook) two-
dimensional mathematical notation and problem descriptions phrased in technical English distinguished by broad
syntactic and lexical flexibility. The design of such a capability raises various questions as to how to resolve the
ambiguous formulations that the user may generate given such fiexibility for input. Strategies must be developed that
take into account the global context dependencies of the presented problem, the accumulated “knowledge” resident
in the machine software system, and the development of useful interfaces to deliver to the user not only the results
of the analysis achieved by the machine system but also appropriate questions, cautions, and warnings that might
limit the validity of the results obtained. That is, the design of the interaction strategy between machine and user
should be based not only on purely technical considerations, but also on a psychological model of the user that is
subject 10 experimental verification and modification if the experimental results should so indicate.

We believe that we have solved much of the user-interface problem for a system whose goal is the automation of
scientific, engineering, mathematical application programming with the AUTOMATED PROGRAMMER (2). In
developing the AUTOMATED PROGRAMMER we have successfully dealt with the problems of input ambiguity,
context-dependent analysis, feedback of system interpretation to the user, and the validity of the results produced by a
numerical computation — ail within the context of application programming given fairly well specified computational
algorithms. The design of an interactive interface to an AUTOMATED NUMERICAL ANALYST poses more
difficult problems in the extensions of these concepts. In all instances, the problem-solver should be able to create,
maintain, reuse and verify his problem specifications in language and notation natural to his mathematicai-scientific
problem solving domain, irrespective of the target execution environment.

The AUTOMATED PROGRAMMER already has the input capability of displaying ordinary and partial differential
equations in their conventional two-dimensional form, and we believe that extending the recognition algorithms and

248




heuristics presently employed by the AUTOMATED PROGRAMMER so that these equations may be recognized
will be straight forward. Figure 4 gives various examples of how such input might be presented 1o an AUTOMATED
NUMERICAL ANALYST.

Figure 4

Solve 4 = y — z, initial y = 2at z = 0 for = 0.1,0.2, ..., 2.

Solve 4 + y? = 0, initial y(0) = 1 for z = .1,.2,.3, 4. 5.

Solve £% — 24 = 0, initial y(0) = 1,y'(0) = -1 for z = .1, .2.

Solve g—:-‘,ﬁ + 2—;% ={z2+y¥)e u® with 0<r<land0<y<]

and boundary conditions (u = 1forz =0.y=0), (u=eY forz =1),(u=¢” fory = 1j.

Concomitant to this would be the consideration of strategies for machine understanding of the specific problem when
posed by the user in technical English. We would anticipate that our approach here would consist of the design of
a set of strategies specific to each problem area. This involves studying how, for specific problem areas, problems
are actually posed in textbooks and the professional literature. Thus our underlying assumption is that even the user
who can be regarded as naive in the intricacies of the craft of numerical analysis will none-the-less have sufficient
acquaintance with the way problems are posed, i.e., he will have some degree of mathematical literacy. Thus this
places some bounds on the proposed flexibility to be expected in understanding what the user poses as a problem.
However the problem of automated understanding, while bounded, is still a substantial research issue.

It is necessary to develop further insight into:
(a) the limits to the flexibility and extensibility of two-dimensional input-output via computer
(b) the limits to syntactic and lexical flexibility of user protlem input phrased in technical English
(c) the extent to which a knowledge base is necessary for a robust system for specific problem areas in scientific
and mathematical computation.

For example, consider the partial differential equation shown at the bottom of Figure 4. An example of an ELLPACK
program for this problem is given in (16). An automated understanding of this problem would entzil (1) the
recognition that the function to be found is u(z. y), (2) the translation of the two-dimensional mathematical text into
an equivalent linear formulation (e.g., Fortran), (3) the generation of the target code in ELLPACK format. Thus, an
AUTOMATED NUMERICAL ANALYST might generate the following ELLPACK interface target code:

Equation
UCXN4HUYY = (N s« 24Y +x 2)« EXP(= NV« Y) 2 I/(X,Y)*2 2

Boundary

U=1.0 ON X' =00
ONY =00

U=EXP(Y) ON X =10
U=EXP(X) ONY =10

Conclusion

We propose design considerations for a high-level user interface to a knowledge framework which would allow
the easy incorporation, in machine understandabie terms, of the wisdom already available in numerical analysis
literature and practice relevant to the selection of an appropriate solution, given that the characteristics of a problem
are understood. Such an interface module should be suitable for the inielligent selection of routines from available
libraries of procedures (e.g., NAG, IMSL, etc.) We put emphasis on the lerms easy and intelligent. That is, although
our approach is pragmatic and problem specific, our goal is 10 create a framework that is flexible and expandable
10 new knowledge. For example, envision a system in which the user will be able 10 browse through the available
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library routines (external or intrinsic) and get information about the mathematical assumptions and computational
characteristics of each function. Upon selecting the appropriate library function, the user will be guided through
the specification of necessary or overridable default parameters. All interaction with the system will be in normal
mathematical notation and technical English. There will be no need for a user to know the number or order of
any required parameters. When the routine is executing and a possible mathematical exception or anomaly arises,
the user will be guided through altemative choices of algorithms, procedures or parameters in order to continue the
computation.

Our strong advantage in pursuing this proposed research is that we aiready have a robust “engine” (the AUTOMATED
PROGRAMMER) that is expert enough to recognize and understand conventional two-dimensional mathematical
notation, as used in the numerical analytical literature, and can accept a much broader range of syntactic and lexical
structures than that permitted by conventional high-level programming languages.

We believe that we can extend these capabilities to the more difficult problem of providing an appropriate interactive
man-machine interface for a system whose goal is the automation of numerical computation. We believe that we
can extend many of the user-oriented methods that we have developed for the implementation of the AUTOMATED
PROGRAMMER 1o deal with the problems of interaction and feedback to the user, selection of appropriate algorithms
expressed as software procedures, elimination of the necessity for the user (o create elaborate protocols for the selected
procedures, and the validation of computed results.

We anticipate that our efforts toward designing a module appropriate for analyzing the problem framed by the user,
the design of a decision process, and the design of an appropriate knowledge-base would be very heavily influenced
by the knowledge that already exists in the numerical analytic literature. Qur contribution would be to determine how
this knowledge can be transformed into a form that not only can be codified, but can also satisfy the user-oriented
and interactive attributes necessary for the eventual realization of an AUTOMATED NUMERICAL ANALYST.
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ABSTRACT

In practical programming systems the ideal of logic programming has not been achieved
because logic and control cannot be completely separated in practice. In Prolog, the most
successful and the most widespread logic programming language, programmers must still
be concerned with the procedural control flow of programs for reasonable efficiency and
desired side effects. A fair amount of high level control constructs are needed for
expressing the procedural semantics of a logic program. The goal of this work is to
establish a representation, a visual language, and some system support mechanisms for
assisting programmers in handling the difficulties arising from these unavoidable control
issues in logic programming.

In this paper, a visual programming model for dealing with the control flow of logic
programs is presented, together with a representation model called VCF (Visual Control
Flow). Existing Prolog programs may be represented in a VCF diagram which is then
transformed to make run time control flow explicit. With these transformed diagrams,
further modifications may be applied to improve the efficiency of execution as well as
the understandability of the program. Used as a graphical programming language in the
design phase, VCF diagrams provide programmers with effective means to express the
logical concepts of programs directly. Finally, VCF diagrams may be used as inputs to a
compiler for more efficient code generation and as a visually interactive debugging tool.

1._INTRODUCTION

Rapid prototyping of intelligent programs is essential to achieve better acquisition,
management and utilization of problem solving expertise. A step toward this goal is
accomplished by visualization of reasoning flow in a logic programming environment. A
graphic language simplifying the visualization of reasoning flow in logic programs is
presented. In the proposed Visual Control Flow (VCF) representation, visual diagrams
present to users the flow of control in a given logic program. This VCF allows a user to
ensure the proper utilization of knowledge and even achieve unexpected efficiency from
automatic reduction heuristics of the support system. VCF is also extended into a
hierarchical reasoning flow (HRF) model that is capable of representing an entire
knowledge base of logic programs, each represented by a VCF diagram. The reasoning
flow information of a logic program at a specific level of abstraction is completely
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reflected by the diagram. This diagram contains all the possible effects of truth value
assignment of its program units.

Applying the HRF model to a knowledge base allows ecasier expression and
understanding of logic programs that manage and utilize all data and knowledge. These
programs are expressed in terms of rules and facts dealing with the "features” of the
underlying application domain. These features are, in turn, represented in the form of
symbolic names, properties, relations, and concepts, each of which could be (recursively)
a logic program unit as well.

Logic programming is an established tool for symbolic processing, reasoning, and
problem solving in Artificial Intelligence (AI). Adopting the first order predicate logic
[Warren82], this approach is entirely user-oriented [Kowalski74]. This field of using
logic for programming has seen a tremendous growth in the past decade both in depth
and in scope {[Shapiro87]. The increasing popularity comes primarily from the
knowledge expressive power in the declarative well-formed-formula (WFF)
representation and from the automatic resolution-unification [Robinson65] deductive
reasoning mechanism.

The uniform knowledge representation of first-order predicate logic allows programmers
to concentrate primarily on the development of the knowledge base (KB) for a chosen
application domain. Separating the explicit problem solving knowledge from the
problem solving mechanism its most significant aspect. Conventional programming
languages normally require users to plan a sequence of imperative actions to handle
match-and-act executions in different levels. Relieving the users (programmers) from the
burden of expressing imperative details, while allowing him to focus on the expression of
knowledge and strategy declaratively, is the fundamental difference, hence advantage, of
logic programming. The solid logic foundation of its reasoning mechanism is completely
automatic, freeing the user from the concerns of details in execution controls.

The original logic programming paradigm intentionally ignores all the explicit control
constructs. Conjunction of ordered goals and Disjunction of ordered clauses are two
underlying constructs. As a practical Al language, Prolog had been compromised
[Clocksin87] to include a few primitive control structures (such as cut, fail, repeat, abort,
and halt) in order to gain more efficiency and to achieve desirable side effects. As a
result, the flow of control in reasoning through a knowledge base can be difficult to
follow and hard to manage, especially for inexperienced programmers. Such difficulties
can be illustrated by the following logic program for merging two already sorted lists:

merge({], L,L):-!.

merge(L, (], L).

merge([AIB], [CID], [AIE]) :- A =< C, !, merge(B, [CID], E).
merge([AIB], [CID]), [CIE}) :- merge([AIB], D, E).

It is not easy to predict the actual flow of reasoning from one statement to another during
program design or during coding phase. It has been shown that some assistence in
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visualizing the reasoning flow of the logic program can significantly enhance the
understandability of the code, the comectness of a developing program, and also the
productivity of programmers. Iconic and visual representations, as opposed to linear
textual structures, of programs have been proven valuable to human understanding as
well as human associative and creative thinking [Chang87].

2. A VISUAL FLOW MODEL

Normally, each logic program is abstractly identified by a name and several formal
parameters in the form of a predicate function term as a defined concept which describes
different possible methods to achieve a class of goals (queries). A goal represents some
instance(s) of the predicate term. Rules and/or facts are enumerated as a collection of the
clauses describing the methods. Basically, a rule is a clause describing a method in
which several subgoals need to be achieved first in order to achieve the goal. A clause
without subgoals is called a fact describing some goal(s) which can be achieved directly.
Based on these structural requirements, it is quite evident that a Visual Control Flow
(VCF) diagram would be helpful to logic programmers. For example, the merge program
above can be directly visualized as a VCF diagram in top part of Figure 1.

Base on box type reduction, port-connection representation
of cut, and some ather static logic analysis

Ss: SR

| (ABLICIDLIAE)D £

Figure 1: VCF Diagram for Merge and its Reductions
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Using these VCF diagrams as building blocks, a Hierarchical Reasoning Flow (HRF)
model for expressing and visualizing an entire knowledge base of logic programs can be
constructed. In the HRF model, a goal (or a program) will be represented as a labeled
box with at most four control ports. To visualize the internal details of this logic
program, the immediate next lower level of abstraction will be seen as an expanded box,
also with at most four ports. The expanded box may include several other boxes
recursively which are put together into a network by a set of port-connections. The
network will reflect the reascning flow among goals and subgoals at that level. The
nested hierarchy of all goals forms a directed graph, where each node (a concept on its
own) is actually a network consisting of lower level concepts. Any higher level box can
be opened up to reveal details in the next immediate lower level, which is a pon-
connection network of intermal boxes reflecting the reasoning flow of all the rules/facts.
Figure 2 is a typical HRF diagram, showing the clauses and control flow to solve the
(familiar) N-Queens problem.

Figure 2: HRF Model for the N-Queens Problem

The HRF model allows users to understand an existing knowledge base by visualizing its
actual reasoning flow in a hierarchical manner. Experience with this reasoning flow
visualization has shown that it can facilitate the process of update or modification of the
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knowledge base as well. Further extensions of it evolve the HRF system into a graphical
programming language by which knowledge of utilizing and managing data/knowledge
can be expressed and communicated among people via the visualization of programmed
logic in moving action (flow of reasoning).

The primitive idea of the 4-port boxes was originally proposed to help understand the
goal querying in Prolog (Byrd80]. The primiuve 4-port box model had been also used in
the debugger Coda [Plummer88]. In this HRF model, each goal, or indeed each logic
program unit, is always presented as a box with four ports; call, exit, fail, and redo.
These four ports represent two types of entries (call, redo) and two types of exits (exit,
Jail) indicating the reasoning flow for the predicate in forward (call, exif) or backward
(redo, fail) execution. Similar diagrams have been adopted to trace the reasoning of a
logic program at debugging time [Plummer88, Walker87].

3._TRANSFORMATIONS AND REDUCTIONS

In this HRF model, the full 4-port box is used only to represent the most general goals or
those goals whose properties have not yet been explored. In other words, not all
predicates (goals) make use of all 4 ports. Considering the necessity of ports in the 16
possible combinations of the 4-port boxes, only six types of boxes are meaningful
(Figure 3). Based on these six types of 4-port boxes, some simplifications can already be
made. As an example, if it is known that a predicate has no way to fail, then ignoring the
fail port as well as its corresponding fail connection makes the representation clearer and
more understandable. Some possible reductions among these primitive 4-port boxes are
shown in Figure 3.

No way to fail up

No alternative §-

No way to fail «p

No way to fail «p

Figure 3: Six Meaningful 4-port Boxes and their Possible Reductions
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In addition, some of the more controversial non-declarative control constructs, such as
cut, fail, and repeat are represented in their equivalent port connection patterns to reflect
the actual side effects. Figure 4 shows the substitutions of the construct cus () and the
predicate not (\+).

Figure 4. Transformation of Control Constructs

From standard Prolog point of view, using the full box to uniformly represent each
individual logic unit is straightforward and effectively describing all possible behaviors
of the predicate. It is even more desirable to evolve this naive representation
automatically and/or manually so that final reasoning flow diagram can more clearly
reflect all the effective choice points and more efficiently avoid entering all the
unnecessary internal input ports (call or exit). Basically, such a reduction/simplification
process involves automatic transformations derived directly from the box type reductions
(in Figure 3), the substitution of non-declarative control constructs (in Figure 4), and
some analysis of inter-relationships among clauses (such as mutually exclusive heads) or
among subgoals in a single rule (such as certain data dependency). The bottom part of
Figure 1 shows the result of applying these reductions the the Merge program at the top.

Subsequent transformations can further enhance the HRF automatically, e.g. skipping
unnecessary transfers of control into some ‘black’ boxes and showing choice points more
effectively through the simplified, clearer diagram. More experienced users could also
manually modify the HRF diagram to better reveal the programmer’s intent through this
visualization as well. When some of these optimizing transformations are applied to the
HREF for the n-queens problem of Figure 2, improvements can be easily seen in Figure 5.
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" Figure 5: Optimized HRF for the N-Queens Program
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4._A PROGRAMMING ENVIRONMENT

In using Prolog as a language for prototyping intelligent programs, it is often
unavoidable that some undesirable, inefficient logic constructs would be used. This
difficulty has, indeed, been considered hindrances to elevate Prolog to an even more
successful Al language. The HRF model, with its automatic and manual reduction
capacity that simplify and visualize control flow, can be used as a debugging and
learning tool. Such assistances could be especially helpful to any programmer with
difficulties adjusting to the peculiar reasoning flow of logic programs. HRF diagram has
been used successfully as a visual language to express and convey user's logic (control)
intents. Based on the visual HRF diagram, a prototype of enhanced logic programming
environment is depicted in Figure 6, including six subsystems, namely Logic-Program
Converter, Interactive Diagram-Editor, Automatic Diagram-Improver, Diagram-Qualiry
Analyzer, Dynamic Intelligent-Debugger, and Executable-Code Generator.

Interactive Automatic

Diagram
Digram Editor Impeover

Diagram Quality HRF Logic Program

Analyzer Diagrams Converter

' Dynamic
Executable Code : intelligent

Generator : Debugger

Figure 6: Visual Logic Programming Environment
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To begin using this environment, a HRF diagram can be either translated from an
existing textual logic program by the Logic-Program Converter or directly constructed
from a conceptual design by the Interactive Diagram-Editor. Any naive HRF diagram
will be automatically transformed by the Automatic Diagram-Improver to remove any
unnecessary boxes, ports, and/or connections, so that users may clearly visualize the
effective reasoning flow of the program under development. The Diagram-Quality
Analyzer statistically reveals the effectiveness of automatic reductions in terms of
number of ports or number of connections removed. Aided by the benefits of
visualization and analyses users may use the Interactive Diagram-Editor to manually
adjust the HRF diagram, from time to time, to better express design intentions. Should
the diagram get too complex to be understood, the Dynamic Intelligent-Debugger can be
used to hierarchically trace the effects of the programs at different levels of abstraction.
Finally, effective executable programs will be produced by the Executable-Code
Generator, which compiles code directly from the HRF diagram.

3. OUTLOOK

Details of the HRF model, as well as each of the six support subsystems, must be further
developed. The contributions from each subsystem towards the overall success of the
logic programming environment must be individually and collectively demonstrated.
Finally, the benefit of utilyzing the HRF model must be proven via statistics, analyses,
and, most importantly, user satisfaction. The parallelization of the HRF model and the
support environment may also be needed to achieve ever increasing performance
requirements.
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Abstract

The main features of GENJAC are presented. It is a package for the automatic generation of numerical
code for Jacobians and Hessians. It applies GENTRAN, a code generation program, and SCOPE, a source
code optimization package. GENJAC, GENTRAN and SCOPE are extensions of the computer algebra system
REDUCE.

1. Introduction. The ever increasing computational power offered by new architectures has broadened the
scope of scientific computation. Coupled to this computational power has been the ever increasing need for suitable
1 environments to manage the problem-solving process as a whole. A user interface such as SUI[3,22], currently under
development at Kent State University, can serve multiple client systems in parallel, including symbolic, numeric,
graphics and document formatting systems. This creates the need for user friendly communication facilities between
the different systems. Symbolic, or more precisely, computer algebra systems provide interaction with a user, often
based on command interpretation. The intention is to allow a user to simulate paper and pencil computations.
Although these systems provide powerful mathematical tools in an ”exact world”, they are not particulary well suited
for doing numerical calculations. This is related to internal data handling strategies and command interpretation.
It introduces the need to provide an interface between computer algebra facilities and numerical tools, such as
libraries. Output, i.e. mathematical expressions or assignment statements, in the form of syntactically correct code
for numerical processing is merely a beginning. One of the findings given in a recent SIAM report {2] is, that the
separation between syimbolic and numeric computation is still (too) large. Bridging this gap is of urgent need.
since the present increase in computational power invariantly leads to increase in problem size and complexity.
This -in turn- will lead to numerical programs, which are not longer codable by hand. Then desk-top hardware
can be used as a front-end facility for code-production. The need for programming environments. including tools
for automatic or semi-automatic program generation, is obvious. Computer algebra can provide essential services.
assumning the earlier mentioned symbolic-numeric intetface is adequate. Ideally, a problem specification, given in
! combination with a specification of the target machine and the required software tools, and serving as input leads
to code -the output- defined in the speficied software tools and executable on the target machine. Or, even better.
it leads to the solution, presented in a user required form. The route from specification to solution requires a
number of intermediate stages, each of which demands software tools, combinable with or partly depending on a
computer algebra system. The target machine may. request problem decomposition. The processes -thus defined-
may need code vectorization. In addition these processes ought to be formulated in syntactically correct, optimized
and reliable target program source code. Such requirements indicate that a symbolic-numeric interface can be seen
as a collection of facilities, which together form the (semi-}automatic program generation features.

Hence, such an interface requires much more than merely translating the description of arithmetic assignment
statements from one high level programming language into another, as provided by most computer algebra sytems
as a simple output option. One aspect is decomposition and vectorization. Another is code generation. code opti-
mization and, if possible, a prior: error analysis. Roughly speaking the first category is strongly related to problem
class and target machine, while the latter group has a more problem independent flavor. Instead of problem classes
it is perhaps better to think of classes of solution techniques. Examples are solution strategies for elliptic partial
differential equations, finite element analysis techniques, Newton-Raphson methods, requiring (inverse) Jacobians.
optimization techniques demanding Hessians, etc. We developed code for Jacobian and Hessian production in a
NAG-library compatible way [12,18]. This package, shortly indicated as GENJAC, is written in RLISP as an exten-
sion of REDUCE, one of the leading computer algebra systems [4,9]. This experimental package is based on the use
of some of the problem independent tools of the symbolic-numeric interface, ie. GENTRAN [5,6,7) and SCOPE
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[14,15]. It serves as a starting point for further research, dedicated to decomposition, vectorization and automated
error analysis strategies. This ”learning from the concrete” is of interest for the sclution of many practical problems.
ranging from neural networks to maximum likelihood estimations in econometry. In addition, it may be a valuable
experience for other classes of solution strategies. Our intention is to explain the present status of GENJAC, i.e.
version 2, and its role in our (future) research in sections 3 and 4. We first give a short introduction to GENTRAN
and SCOPE in section 2.

2. GENTRAN and SCOPE illustrated. GENTRAN allows to translate syntactically correct MACSYMA [19]
or REDUCE commands, or their evaluations (including function definitions, declarations and the like) into their
equivalent in FORTRAN, RATFOR or C. SCOPE is designed to assist in minimizing the arithmetic complexity
of computer algebra output. This output consists often of lengthy expressions, grouped together in blocks of
straightline code for numerical execution. The optimization strategy is based on heuristic techniques for finding,
and adequately replacing, common subexpressions in such blocks of code. .

As an example we discuss the production of optimized FORTRAN-code, using both GENTRAN and SCOPE, for
computing the inverse of the symmetric (3,3)-matrix M, given in Figure 1. The same example was earlier discussed
in [3].

2 2 2 2

M(1,1) := - ((9*P *M30 + J30Y - J30Z)*SIN(Q3) - (18*M30 + M10)*P - 18*COS(Q3)*COS(Q2)*P *M30 - J30Y - J10Y)
2 2 2 2
M(2,1) := M(1,2) := - ((9*P *M30 + J30Y - J30Z)*SIN(Q3) - 9*COS(Q3)*COS(Q2)*P *M30 - 9*P *M30 - J30Y)
2

M(3.1) ‘= M(1.3) '= - 9*SIN(Q3)*SIN(Q2)*P *M30

2 2 2
M(2,2) = . ((9°P *M30 + J30Y - J30Z)*SIN(Q3) - 9*P *M30 - J30Y)

M(3.2) = M(2,3; =0

2
Q

M(3,3) .= 9*P *M30 + J30X

Figure 1: The mainz M

Gaussian elimination, and hence determinant calculation, is quite efficient in a numerical context. The space
complexity is O(n?) and the time complexity is O(n®). Both are different in a computer algebra setting [10], and
strongly related to the structure and size of the matrix entries and of course also to the size of the matrix itself and
1ts degree of sparsity. Although computation of the inverse M NV of the matrix M is seemingly simple (a command
like MNV := M~1 suffices) each entry of MNV is a rational expression with det(M) as its denominator. The
entry MNV(1,1), thus obtained,is:

2 2
MNV(1,1) := ((9%(J30Y - J30Z + J30X)*P *M30 + 31°P *M30 + JA0Y*J30X - J30Z*J30X *SIN(Q3) - 9%(J30Y + J30X)*F *M30

4 2
- 81°P *M30 - J30Y*J30X)/({(9*((J30Y - J3LZ)*(J10Y + J30X) + J10Y*J30X)*M30 + J30Y*M10*J30X - J30Z*M10*J30X)*P

4 2 24 2
+ 9%(9%(J30Y - J30Z + J10Y + J30X)*M30 + (J30Y - J30Z + J30X)*M10)*P *M30 + 81*(9*P *M30 + J30Y)*SIN(Q2) *P *M30

6 2 2
+ 81%(9*M30 + M10)*P *M30 + J30Y*J10Y*J30X - J30Z*J10Y*J30X)*SIN(Q3)- (9*({J10Y + JI0X)*J3DY + J10Y*I30X)*M30 + JI0Y*M10*

2 2 4 24 2
J30X)*P - 81°((J30Y . J30Z) + 9*P *M30)*SIN(Q3) *SIN(Q2) *P *M30 - 9%(9*(J30Y + J10Y + J30X)*M30 + ( J30Y + J30X)*M10)*

4 2 2 24 2 6 2
P *M30 + 81°(9*P *M30 + J30X)* COS(Q3) *COS(Q2) *P *M30 - 81%(9°M30 + M10)*P *M30 - J30Y*JiOY*J30X)
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When straightforwardly translating the results of formal algebraic processing into numerical code many inefficiencies
occur. Code for computing the non-zero elements of M NV can contain many det( M) computations. An alternative
is to compute M NV numerically. But then tools are required, as part of the symbolic-numeric interface, to
determine a priori and automatically the precision required to perform these numerical computation in a reliable
fashion. Work in this direction is also in progress [13,17]. A combined use of GENTRAN and SCOPE provides a
simple mechanism for the construction of a fairly optimal description of M NV, as illustrated in Figure 2.

REAL Q3.Q2,M30,P,J30Y,J30Z,J10Y,M10,J30X,A1,A13,A11,A10,A19,A17,
. J10Y,A18,M(3,3),T0,T1,T2,T3,T4,B21 B12,B3 MNV(3,3)

A1=SIN(REAL(Q3))
A13=P*P

A11=A13°M30
A10=A11*COS(REAL(Q2))*COS(REAL(Q3))
A19=9%A11

Al7=(A194J30Y-J302)*A1* Al
M(1,1)=18%*A104J30Y+J10Y+A13*%(183*M30+M10)-A17
Al8=A19+J30Y-A17

M(1,2)=Al18+9%A10
M(1,3)=-(A19*SIN(REAL(Q2))*Al)
M(2.2)=A18

M(2.3)=0

M(3.3)=A19+ 130X

TOo=M(1,1)
T1=M(1,2)
T2=M(1.3)
T3=M(2.2)
T4=M(3.3)

B21=T1°*Ti
B12=TO0*T4-(T2*T2)
B3=B12°T3-(B21*T4)
MNV(1,1)=(T4*T3)/B3
MNV(1,2)=-(T1*T4)/B3
MNV/(1,3)=-(T2*T3)/B3
MNV(2,2)=B12/B3
MNV(2.3)=(T2*T1)/B3
MNV{3,3)=(T0*T3-B21)/B3

DO 25001 J=1,3
DO 25002 K=J.3
M(K.,J)=M(J K)
MNV(K J)=MNV(] K)
25002 CONTINUE
25001 CONTINUE

Figure 2: The code generated for the computation of MNV

The code presented in Figure 2 consists of 5 sections; it was made on line with a mixture of REDUCE, GENTRAN
and SCOPE commands. The declarations are followed by a section defining the computation of the relevant entries
of M. Then some lines are used to rename the entries; these new identifiers are temporary variables used in the
computation of M NV. The fourth section defines the computation of the relevant entries of M NV. It shows the
essential role played by the placeholders. A double loop is finally used to obtain values for the under-triangular
entries of both M and M NV . The description of the M-entries shows common subexpression (cse) definitions and
uses. The cse-names start with the letter A. The M NV-section has a similar structure; this time the cse-names
start with a B. Both sections were considered as blocks of code and were optimized seperately, using SCOPE. Hence
both sections show system-generated cse names, which are also placed in the declaration section. The declarations,
the temporary variables and the loop-construction are all obtained by using special GENTRAN features.

As suggested by the example it is possible to interactively construct programs, mainly consisting of extensive, but

optimized arithmetic. It also shows that declaration production can be automatized as well. However, it demands
a lot of user intervention and activities, besides working knowledge of some of the internal features of a number of
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software facilities, applicable as extensions of REDUCE. And, we only demonstrated the production of a piece of
sequential code.

Since determinant calculation in a computer algebra setting is an exponential process, the size of the matrix we
have to deal with, can not be too large. So, when a inverse Jacobian is required for some computation it is best
not to attempt to use a computer algebra system for it. Automatic generation of a Jacobian or Hessian however
can be done quite efficiently, as discussed in the next session.

3. Generation of Jacobians and Hessians. GENJAC.1 {12] was based on a combined, but restricted use of
both GENTRAN and SCOPE. We concentrated on the production of reasonably efficient code for computations
involving a system of non-linear equations and the associated Jacobian. Optimization, using SCOPE, was performed
blockwise , like shown in the example of the previous section. The Hessian production facility was simply added by
programming a few extra lines, but was limited in its capacities.

GENJAC.2 [1] is our present facility. It is also coded in RLISP as an extension of REDUCE, like GENTRAN and
SCOPE. The program accepts a description Dg of a set of of nonlinear equations E. Specification of C or Pascal
as a target language is possible. Fortran is the default selection. The user can request the construction of programs
Pg, P;, Py or combinations of such as Pg;, Pgsy, for instance in the form of procedures, which are compatible
with relevant NAG [18] library routines. The programs are all globally optimized. Pg defines the computation of
E. P; and Py are similar definitions for the Jacobian of E and the Hessian of E, assuming |E’| = 1, respectively.

Let us first discuss how to obtain Pg, Py or Pg;. The construction of Py or Ppyy is based on a similar but
repeatedly applied approach. GENJAC.2’s use is straightforward and syntax driven. Four different commands can
be used for the construction of Dg, depending on the structure of E: eqvars, eqgindices, puteq and constraints,
as shown in Figure 3.a.

% GENJAC.2's input SUBROUTINE FUNC(X,F JAC)
INTEGER 11,12,J K, NDIM,G43,G33,G36
eqvars 3,b$ REAL X(18),EPS,G37,G44,F(18),JAC(18.18)
C PLEASE NOTE "
eqindices ) k$ C  THE FOLLOWING VARIABLES ARE GLOBAL
C EPS
puteq (a().k)-b(y.k))*a().k)-sin(eps) NDIM=138
index 3.k from 1,1 upto 3.3% DO 25001 11=1.18
DO 25002 12=1,18
puteq {(a(;.k)+b().k)}*a() k)-sin(eps) JAC(11,12)=0
index j .k from 1.1 upto 3.3% 25002 CONTINUE
25001 CONTINUE
mapfiles fw bw$ G37=SIN(EPS)
DO 25003 J=1,3
genfdf foo header func,x,fyac$ DO 25004 K=1,3
G43=3")+K
G33=G43-3
G36=G43+6

F(G33)=X(G33)*(X(G33)-X(G36))-G37
JAC(G33,G36)=-X(G33)
G44=2°X(G33)
JAC(G33,G33)=G44-X(G36)
F(G36)=X(G33)*(X(G33)+X(G36))-G37
JAC(G36,G36)=X(G33)
JAC(G36,G33)=G44+X(G36)

25004 CONTINUE

25003 CONTINUE
RETURN
END

Figure 3: a. Input, b. Resulling code

It also shows that some other commands are available for code production. These commands are discussed below.
It is permitted to use subscripted independent variables in the definition of the different equations. This can lead to
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classes of equations and thus also to constraints. Let us assume, as an example, that E is formed by the following
sets of equations:

Ey

E,

REDUCE is informed with

eqvars a,b$
that a and b -both possibly subscripted- function as independent variable names. The command

eqgindices j k$
states in addition that j and k will function as indices, when ever required. The classes E; and E, are introduced
using the commands

puteq (a(§.k)+b(j.k))*a(j,k)-sin(eps) index j .k from 1,1 upto 3,3$

puteq (2(j.k)-b(j k))*a(j,k)-sin(eps) index j,k from 1,1 upto 3,3%
These descriptions are internally stored in the form of records. Initially this set of records R is in fact unordered,
since any input order for the elements of E is admissible. Each record R; defines one class of equations E;. R; is
a quadruple (D;,V;,S;.L;). D; is the internal representation of the expression characterizing E;. V, is the set of
independent variables, used in the definition of E; and S; the corresponding set of subscript ranges. L; finally is an
expression, to be used to localize the rows in the Jacobian matrix holding the partial derivatives of D; w.r.t. the
elements of V;.

{(a(j, k) — b(j, k) x a(j. k) = sin(e)|] < j < 3.1
{(a(5. B) + b(4, k) * a(5, k) = sin(e)|1 < j < 3,1

A record representation can be: D,
V1S ] L

The record generated for the equation class E, has the form as shown in Figure 4.a

(a{y, k) — b(7.k)) * a(j. k) — sin(e) FOR J:=1:3 DO
(a(j. k) b(j, k) [[(13)(13)] | 3x7+k-3 FOR K:=1:3 DO
<<FF(L,) := Dy;
JJ(Ll,cola):z-é-‘?-Q"k—);
JJ(Ll,col,,):=%U'kL)>>

a b

Figure 4: a. Record, b.Gencrated code

The content of D), V) and S; is obvious. Assuming E| is the first equation class we have been entering, the first 9
rows of the Jacobian matrix will be required to store the gradients of the elements f, ; ; of E,. Since k is associated
with the inner loop and j with the outer the row 3 « j + &k — 3 of the Jacobian matrix is used to store the Vf, ; ;.
It may happen in some cases -due to boundary conditions, for instance- that some of the independent variables
have initial values. These constrained variables can be made known to the system with a special command. A
constraint like C : a(1,1) = 1 is introduced to the system with the command
constraints a(1,1)=1%

Such a constraint can influence the contents of the different components of some of the records, requiring some
redefinitions. It can even lead to an enlarged initial record set R. When, for instance applying C on R, three new
records are required (Figure 5).

The thus extended set R is in fact still unordered. But constraint-based record modifications guarantee that all
elements of R can either be translated into a (nested) loop or into an assignment statement. Once input processing
is completed RLISP code C; is made for each record R;. C; consists of atmost three components. A loop header
made out of the S; information, the definition of an assignment statement, defining how to compute D; and finally

265




a set of partial derivatives, being the non-zero entries of the Jacobian matrix for this R;, using its D;, V; and L;
information. Figure 4.b shows the code generated for E;. Once the transformation R = C is made it is possible to
apply GENTRAN directly to this intermediate rough form, thus obtaining equivalent code in the target language.

1-6(1,1) — sin(e) {a{j. k) — b(j, k)) * a(j, k) — sin(c)
A Tl ] (a(j. k) b(5.k)) | [(2 3b) (13)] | 3+j+k-3
a

(a(1,k) = b(1,k)) = a(1, k) — sin(c)
(a(1.k) 6(1. k) [ (--)(23)] [ k
C

Figure 5: Added records

We can even apply SCOPE to locally optimize the different blocks of code, given by the C;, and as illustrated in
section 2. But we can do better. The set C can be ordered by applying some transformations -loop fusion, global
code optimization and code motion- based on the result of a data dependence analysis. We extended GENTRAN
with a data dependence analyser DDA [11]. This module accepts programs in the intermediate code, such as C,
which are constructed with arithmetic assignment statements and loop structures only. Statements S; and S,
are called data dependent if both statements refer to the same identifier V'. Control dependence occurs when a
loop header index is refered by a statement. In view of the structure of R and thus of C we only expect (control)
dependences in the intermediate code C. Subjecting C to a DDA-search produces relevant information about control
dependences and thus about the real execution order of the C;, together forming C. We associate a set execord
with C, defining the execution order of the (sub)sections of the C;’s.

Once all control dependences are known loop fusion becomes possible. All R; were transformed into C,, implying
that identical loop headers may have been created. Assume we use the indices iy,i2,...,i,. If for E; and E; an m
exists such that the ranges of i; in both E; and E- are equal, 1 < j < m, the loop structures for £, and E; can be
combined together:

FOR i;:=a; : b DO
FOR igi:dg : bg DO

FOR im:=a,, : b, DO
<<
<Assignment Block for £, >;
<Assignment Block for E; >
>>

All bookkeeping required to actually accomplish the possible fusions, i.e. code contractions, is done by modifying
the content of the elements of execord. Hence execord possibly induces a permutation of the original execution
order.Once the final execution order of the C; sections or fused sections of them is determined, global code
optimization can be performed. Optimization using SCOPE means removal of redundant arithmetic with fast
heuristic techniques. Only minor changes in the internal data handling structures were required to incorporate
data dependence considerations in the heuristics of SCOPE. Hence all arithmetic defining portions of code can be
collected and analysed. However, the limited set of indices used for the description of the arithmetic assignment
statements can lead to erroneous results. ldentical expressions in indices, but occuring in different sections of
the intermediate code can not be considered as identical computations. To avoid this, each loop header left after
the process of loop fusion receives its own unique iteration identifier. These indices are also substituted in the
other sections of the loop, i.e. in the arithmetic expressions, which are going to be optimized. Once optimization
is performed, in fact a transformation of the blocks of arithmetic occuring in C and using SCOPE, C has to be
restructured to take these improvements into account, again leading to some modifications of execord. The now
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created version of C consists of loops and blocks of assignment statements. Due to the strategy, outlined so far, it
may happen that common subexpressions are nested too deeply, simply because they are defined with less indices
than required at that level, or without any index at all. This was an additional reason to apply the DDA-module.
We apply code motion to move all such loop invariant computations outside the loops containing them. This is
accomplished by a further modification of execord. Once these transformations are completed we can produce the
programs Pg, Pj or Pg,, using GENTRAN.

Figure 3 b) gives Pg, for the set E, used as illustration so far. It shows that loop fusion is performed, that some code
optimization was possible and that the code for computing sin(¢) was moved outside the loop. Some commands
can be used to influence code production, as also shown in Figure 3.2

The command genfdf FOOS results in a complete program Pg; stored in file FOO with by default names in the
header for the independent variables (X X)), the definition of the equations, with right hand sides reduced to 0
(FF) and for the entries of the Jacobian (JJ). However the genfdf command can optionally be extended with
two features. The split FOO1 option gives Pg in file FOO and P; in file FOOl. The second option, further
extending the command, is header FUNC(X ,F,J). Here FUNC, X, F and J denote user selected names for Pr,
P; (DFUNC) and X X, FF and JJ, respectively. In addition execution of the command mapfiles FW BW$ leads
to a procedure, defining a forward map of the independent variables on XX or its equivalent, stored in the file FW
and to a similar backward facility stored in file BW. The content of FW for our example is:

SUBROUTINE FORWMAP(A B, XX)
REAL XX(18),A(3,3),B(3,3)
INTEGER G0050,G0051,G0052,G0053
DO 25007 Go050=1,3
DO 25008 G0051=1,3
XX(3*G0050+ G0051-3)= A(G0050,G0051)
25008 CONTINUE
25007 CONTINUE
DO 25009 Go052=1,3
DO 25010 G0053=1,3
XX(3*G00524G0053+6)=B(G0052,G0053)
25010 CONTINUE
25009 CONTINUE
RETURN
END

The strategy, outlined so far for the production of Jacobian code, requires only minor modifications for production
of Pgsy for the Hessian matrix H, associated with some function f. Like done for Pg; we start setting up a set

R’ of records R;, using the eqvars, eqindices and puteq commands. Assuming f = f(z1,z2,...,Z,), the D!
component of R} is gf;. the component V' is (z;,22,...,Z,), the S] component is not required and the L compo-

nent is simply /. An important difference with the above outlined strategy has to be remarked. H is symmetric.

- 2 . . .
since 3%;,‘; = 3%'"5%‘ Therefore we do not produce the under-triangular part of H, but generate like shown in the

example in section 2, a double loop for this part of H. The subroutine below shows Pg;y for f = f(z,y) = 2* = %

SUBROUTINE FUNC(XX.FF JJ HH)
INTEGER 11,12.NDIM
REAL XX(2),G41,FF,G43,JJ(2) HH(2.2)
DO 25001 11=1,2
DO 25002 12=1,2
HH(11,12)=0
25002 CONTINUE
25001 CONTINUE
G41=XX(2)*XX(1)
FF=G41°G4)
G43=2°G41
33(1)=G43°XX(2)
HH(1,1)=2°XX(2)*XX(2)
1J(2)=G43°XX(1)
HH(2,1)=4°G41
HH(2,2)=2*XX(1)*XX(1)
DO 25003 I1=1,1
DO 28004 12=11+1,2
HH(11,12)=HH(12,11)
25004 CONTINUE
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25003 CONTINUE
RETURN
END

4. Conclusions and Prospects. We briefly indicated the present state of our research concerning automated
generation of reliable and efficient numerical code. QOur goal is to develop tools, which are easily usable in an
adequate programming environment and which only require problem specification and definition of target hardware
and sofware for the production of a reliable solution.

We decided to employ automated generation of Jacobians and Hessians not only to gain experience in the diversity
of tasks, required for such an operation, but also because many interesting applications are known and provide a
practical setting for feed-back. Decomposition -or phrasing it slightly differently process distribution- is probably
not too complicated and do-able like vectorization of processor code. We already performed some quite satisfactory
experiments with code vectorization [8]. These experiments were partly based on a modified use of some parts of
the SCOPE code. It stimulated further research in this direction [21]. It also made evident that the introduction
of flexible vector- and tensor operations in REDUCE is a need. We intend to use these facilities also to further
improve our code for Hessian production.

We also decided to reconsider the design of GENTRAN. GENTRAN was originally made for the generation of
code for the traditional von Neumann architectures. But it now lacks features to assist in generating programs for
alternative architectures. This has lead to the development of GENCRAY [23]) and GENW?2 [20]. Both packages
are used for the production of finite element code, to be executed on a CRAY- or a Warp-machine, respectively.
The output of GENCRAY is FORTRAN-77 or CRAY FORTRAN-77, while GENW2 is a W2-code generator. W2
is a PASCAL-like high level programming language for the Warp array. These variations on the GENTRAN-line
form an answer to the question how to use a workstation as a front-end. But is it an adequate answer?
GENTRAN is a translation tool. Hence -when really using GENTRAN and thus REDUCE with more general
intentions- a more profound approach is required. A translation into a parallel loop, likewise demands the existence
of a syntactical construction to define this parallel operation. Hence, not only GENTRAN has to be modified, but
REDUCE as well. This is at present being investigated as well [16)}.
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About the Work of the Committee on the Software Packages for
Mathematical Physics and the Committee of the Programming
Technology and Software Tools for the

Computational Experiment
by

Yu. 1. Shokin
Institute of Computational Technologies
Siberian Division of the USSR Academy of Sciences
Novosibirsk 630090
USSR

The Committee on software packages for mathematical physics is a non-governmental society of researchers and
experts working on creation of new computational algorithms for the problem solution of mechanics of continuous
medium, designing general-purpose and special-purpose computers for the solution of “cumbersome” problems of
mathematical physics as well as on the organization and carrying out of computational experiments in hydro- and
gas dynamics, mechanics of solids under strain etc.

This Committee is part of the Section of the software for the mathematical modelling of the Scientific Council on
the complex project “Mathematical Modelling” of the USSR Academy of Sciences.

This Committee works in close cooperation with the Committee of the programming technologies and software tools
for the computational experiment directed by V.1. Legon'kov (Tchelyabinsk).

Those both Commitiees were organized on the initiative of the late Academician Yanenko who was the chairman of
the First Conference on the problems of cumbersome problems solution by computers held in Novosibirsk in 1971.
The second conference (Moscow province, 1972) defined the scope of the problems under consideration, i.e. the
computer realization of numerical methods of problem solution of mathematical physics, operating and language
facilities for different stages of the development and operation of the applied programs and analytical computations.

Further on, the conferences became traditional; the eighth conferences (the last one presided by Academician
N.N. Yanenko) was held in Tashkent in 1983.

Since 1986 the Committee on the software packages for mathematical physics has been headed by the corresponding
member of the USSR Academy of Sciences Yu. I. Shokin and the Conference on the software packages for the
mathematical physics resumed its regular work (once every two years ) which had been interrupied by the death of
Academician Yanenko. In the time between the conferences working sessions of the Committee were held (together
with the Committee headed by V.1. Legan’kov). As a rule, such sessions were held after the all-Union Conference
of young scientists on the numerical methods in the mechanics of continuous medium.

In 1987 the working session of the Commitiee on the software packages for mathematical physics 1ool place which
determined the principal directions of research, forms of activity and the personal membership.

The participants decided to concentrate their efforts on

e regular and timely exchange of information on the development of computational methods of mathematical
physics and their implementation in prograrns, creation of application packages, and mastering new models of
computers. i

o as well as on the coordination of projects of general system and applied software and in the program realization
of computational algorithms
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o the mapping of the computational methods’ structure onto the architecture of compulers

o staiement of the requirements (o the program implementation of new efficient numerical models and algorithms
with the aim of working out the standards of documentation and publication of the Lime-and space consuming
programs of mathematical physics;

e on computer efficiency in problem solution in the mechanics of continuous medium.

It was suggested that the members of the Committee should write summaries on the subjects within the scope of
the Committee activities including:

o Program realization of the algorithms of mathematical physics on the computer systems of modem architecture;
e Perspective development of computers in the USSR and overseas;

o Basic structures of the groups specialized in computational experiments in natural science;

o General system software at present and its prospective development;

e Reviews of Proceedings of all-Union and international symposia and conferences.

Among the members of the Committee are professor Yu. 1. Shokin, professor E.A. Bondarev (Yakutsk), professor
V.P. Ilyin (Novosibirsk), professor V.A. Karlov (Moscow), professor V.F. Kuropatenko (Tchelyabinsk), professor
AF. Sidorov (Sverdlovsk), professor ANN. Shevichenko (Kharkov), professor 1.A. Nikolayev (Rostov-na-Donu) et
al.

In 1986-1990 the Committee held five working sessions, three all-Union Conferences on the software complexes
for mathematical physics, organized the publication of two volumes of proceedings and several preprints.

The scientific program of the Commiittee included:

e Models of multicomponent turbulized media;

e Models of the mixing of heterogeneous media (V.F. Kuropatenko);

o Algorithms and software for the problem solution of chemical kinetics (Ye.A. Novikov):

e Algorithms and software for the problems of resistivity prospecting (S.M. Bersenev);

Method of incomplete factorization, new results (V.P. Ilyin);

Employment of R-functions in problem solution of mathematical physics (G.P. Man’ko);

Modification of the method of finite volume for axiosymmetrical problems of gas dynamics (S.N. Martyushov);

Peculiarities of mathematical modelling of non-isothermal gas filtration (E.A. Bondarev),

Numerical modelling of non-equilibrium processes in channels of variable cross-sections (Yu. N. Deryugin);

Qualitative properties of the solution of equations with sign-changing viscosity (V. A. Novikov),

e On some semi-analytical methods of solution of non-linear problems of the mechanics of continuous medium
(AF. Sidorov);

e Method of differential approximation employed for the qualitative analysis of difference circuits schemes
(Yu. . Shokin)

In cooperation with the Committee for programming technologies and software tools for computational experiment
general methodological problems have been discussed, such as:

o Problems of software development for computational experiment (V.I. Legon’kov);

e Vectorconveyor computer system (programming of problems of mathematical physics) (L.N. Stolyarov);

o Estimation of level and quality of software facilities (A.V. Viadyiskiy);

¢ Architecture of high-performance computers;

o Computational experiment under conditions of mass computations by different user groups (L.V. Nesterenko)
o Organization of mathematical departments engaged in computational experiment (V.F. Kuropatenko).

In addition, some already developed software systems have been discussed:

e SAFRA - support system for creation and operating the application packages for mathematical physics (Institute
of Applied Mathematics, Moscow)
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o Automatic SATURN-technology of the design and support of program complexes (dialogue application packages)
with automatic scheduling and flexible monitoring of the computation process (Irkutsk computing centre);

o Software tools for support and methods of program development in high-energy physics (International Institute
of Nuclear Research Dubna);

o MOST-technology (Institute of Technical Physics, Tchelyabinsk);

Committee of programming technology and software tools for computational experiment worked on the problems
associated with the development of powerful application software, packages and program complexes for the com-
putational experiments for solution of equations with partial derivatives. The members of this Commitice were
representatives of both Academy of sciences and industry as well as from different computing centres. The Com-
mittee is headed by V.I. Legon’kov a recognized authority in this subject.

The aim of Committee was to develop general requirements to the software for computational experiment which on
the one hand should be based on the international standards of software technology and on the other hand could
employ the problem-oriented technologies already developed in our country. In 1987-1991 the Committee mostly
dealt with:

¢ problem-oriented development technologies of the powerful programs of mathematical physics;
o estimation of application programs;
e development of the model of labour consumption of a program.

The development of the problem-oriented technologies and software tools for the development of powerful programs
intended for the solution of equations with partial derivatives is one of the most popular trends in this field in the
Soviet Union. One of the first projects in this sphere is the SAFRA system created by a group headed by professor
A_A. Samarskiy. This system has much in common with the well-known OLYMPUS system.

Later, many systems have been developed by various organizations in the USSR based on fairly original but
sometimes contradictory concepts. Among them we could mention systems intended for the solution of differential
equations: SATURN developed in Irkutsk Computing Centre under the supervision of academician V.V. Matrosov
and the software tools SOK and SOP developed by a team headed by V.I. Legon’kov. All these systems are fairly
advanced, employ language facilities of their own and have a set of system components supporting application
technology when application programs are being developed. Nevertheless, they are too dissimilar, indeed, no
coordinated use of the programs developed by means of different software tools is possible because of the difference
in the organization of the supporting systems.

Several meetings of the Commitiee were devoied 1o the analysis and comparison of the systems SATURN, SOK
and SON. The authors of the project also took an active part in the discussion. The resulting recommendations
defined the most promising application for every sysiem. It must be noted that although application characteristics
are usually included into the user’s manual for every system the document developed at the meetings was primarily
based on the comparative analysis.

Some organizations in the West (¢.g. Electricité de France) also perform regular comparisons of different software
tools in order to work out the recommendations for their application, this work seems very useful not only practically
but also methodologically.

Let as dwell on the problems of the qualitative estimation of programs. The objective set of criteria for such an
estimation is an important part of any program production technology if it is intended for the practical use. From
our viewpoint, the most interesting thing is not to estimate an isolated program but to evaluate a set of programs,
especially a sequence of versions of one and the same program. Practically, the importance of such estimation is
due to the possibility of control over the processes of the development and optimization of a software tool. This,
rather pragmatic, viewpoint brought us to the revaluation of many well-known evaluation methods of the program
quality. As the basic initial solution variants, the Commitiee considered both the works of Western experts (B. Boem,
G. Meiers, Van Tassel, J. Fox) and the Soviet programmers (V. Lipayev, V.1. Legon’kov, A.F. Kulakov). After
discussion the members of the Committee worked oul the recommendations for the analysis and quality estimation of
the programs of mathematical physics. These recommendations included a system of criteria so that the estimation
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could be presented either as an index vector or as a weight formula with a cenain system of weights.

As for the model of the labour consumption of the software tool development, no common point of view has been
developed though this problem has been being discussed since 1989. As a matter of fact, all the cumrently used
models of this kind are far from being realistic. They usually take into consideration only one resource required
for the program development, i.e. strength of the personnel. Such is, for instance, the model of Barry Boem. In
practice, we are, however, interested in the whole range of the consumed resources which must include at least:

e computational resource which comprises a set of various computational facilitics employed in development and
operation of a software too};

o human(labour) resource, i.c. the number and qualification of the team of designers;

e the auxiliary (overhead) resource including different indirect costs (the rent, electricity bills, wages of service
staff etc.)

For some of these resources specific time dependencies are known over the life cycle of a program. However, in
our opinion, an integrated mode! of labour consumption must be developed comprising the most complete set of
estimates and their functional interrelations including both static and dynamic dependencies.

As different models of personal computers are now widely used in numeric modelling the Committee had to consider
the PC employment in the computational experiment and the efficiency of the development and use of the general
system and software tools for this kind of computers and also the necessity to arrange exhibitions demonstrating
new software systems.

At the last Conference (1990, Rostov-na-Donu) it was pointed out that in the USSR there were up-to-date algorithms
of mathematical physics and adequate program facilities that can prove viable both on the national and international
market. It mostly refers to the program modules realizing new algorithms of mathematical physics.

We think it very important and useful that the experts from different countries working within the IFIP 2.5 group
should be informed about the results of their Soviet colleagues. To this end, we could translate the Proceedings of
the Committees’ conferences into English and present the reviews and prospectuses of specific program systems.

In conclusion, it must be noted that the Committee on program complexes is planning to hold its next Conference
in Ulan-Ude, 1992 and to publish its Proceedings. New algorithms and programs of mathematical physics will
be discussed, the development trends of the computational mathematics, computer engineering and programming
methods will be studied. Development and use of the intellectualization systems in computational experiment will
be investigated as well as the program development technologies for the mathematical physics and computational ex-
periments. The Committee is going 10 encourage the market research and the marketing prospects for the application
software.
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Introduction

This paper explores the user interface issues that are important for the future of scientific computing. First, user
interfaces in general are explored. Next, the focus is narrowed 1o scientific applications. Finally, there is a survey
of some user interface techniques that I think are of interest.

Disclaimer: The author is president of Prescience Corporation which develops and publishes two commercial
packages mentioned: Expressionist and Theorist.

User Interfaces

The topic of user interface is popular these days, although frequently there is more attention paid to interfaces that
are novel and technologically sophisticated instead of interfaces that actually help users,

User interfaces should be appropriate for the job at hand. No one user interface is appropriate for all applications,
although frequently it is easier to adapt to an interface that exists than to develop an entirely new interface.

The ubiquitous character-oriented user interface, which depends upon the keyboard and alphanumeric display, was
fashioned after typewriters. It is most appropriate for word processing, although it has been adapted to almost
everything regardless of how inappropriate and hard-to-use the result was.

The first graphical user interface computer is usually regarded as the Xerox Star. In the mid 1980’s Apple Computer
introduced its Lisa and Macintosh series of computers, One of the main developments of this was that a social
atmosphere was created whereby line-oriented user interfaces were shunned, forcing developers to leam how to
integrate the graphical user interface into their applications. The results were a much more user-oriented environment.
Such technology is now being ported to other graphical user interfaces, such as the X Window System.

Software developers and users need to remember that a graphical user interface alone does not automatically make
software easier to use, although it does allow greater opportunities. You cannot make software easy to use simply
by linking in the *‘ease of use” library.

User interface is a subtle art. Making software easy to use has as much to do with what is omitted as with what is
included.

Even power users need good user interfaces. Power users are intelligent people whose time is valuable. Although
they have a greater capacity for details and a greater tolerance for bad user interfaces, we will make the greatest
gains by expediting their work. It may be true that the user interfaces that are best for their purposes are different
from those that are appropriate for beginners, but that does not mean that they should be content with spartan user
interfaces.

As most users are not well versed in user interface techniques, the bulk of the user interfaces will come from
commercial products, which will be programmed in their own languages by users for specific tasks.
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User Interfaces for Scientific Computing

Numerical, Symbolic and Graphical capabilities are or soon will be available 1o all simultaneously. For the solution
of large problems, probably all capabilities will be used. The increased complexity of these tools calls for improved
user interfaces.

Large computing on supercomputers have been characterized by massively powerful processing on huge data sets,
whereas personal computers have been characterized by improved user interfaces. These technologies are cross-
fertilizing as workstation power increases and as graphical user interfaces and user interface techniques migrate to
larger systems.

One of the reasons why smaller computers have been easier to use has been sheer simplicity. If the machine has
fewer moving parts, it’s going to be easier to understand the parts that must be manipulated and therefore the user
will have more control and therefore more power, even though the machine is inherently less powerful.

On larger computers it is typical for designers to incorporate more commands, options, and facilities. The resulting
mind-boggling array of choices, and the subsequent confusion caused by their use, is one of the biggest reasons why
larger computers are falling under disfavor. Designers think that they should be moving in the direction of freedom
of choice, but instead they should be moving in the direction of freedom from choice.

One of the tricky arts of user interface design is to hide complexity behind software that automatically takes care
of the details. This can be a big problem with mathematical software. Everywhere we wm, we find exceptional
situations that cause our algorithms to break, requiring human oversight and intervention.

For inslance, simple integration algorithms using fixed step sizes worked well, except for functions with singularities
or other violent irregularities. Users of such software had to be mindfu! of such problems, paying dearly in attention-
span resources, and in some cases adjusting options until satisfactory results were achieved. Newer algorithms that
usc adaptive stepsizes are more robust in those respects. Developers of such algorithms have tended to think that
they were increasing the reliability of the algorithm; another way to look at it is that they were improving its user
interface by taking care of details for the user automatically, searching for irregularities and doing the right thing
for each instance, so that the user has more attention span to devote to his work.

One element that is needed to increase the state of the art is for air- tight algorithms that “always” work, or that
can notify a user of their failure in the case that they don’t work. What is NOT needed is algorithms that fail by
handing back an incorrect answer with no other notification, as these will end up costing the user much more time
than the presumably speedy algorithm saved in the first place. '

Developers of scientific software will increasingly have 1o view the user as a stubborn and naive all-terrain vehicle
driver who is willing to drive in any direction, through the mud and up sheer edifices persistently until either he
arrives at his goal, or his vehicle overtums, whereupon he will right his vehicle and lock for another path to his
gaal, perhaps without really understanding the internals of the vehicle or the reasons for the failure. The developers
who can build such vehicles will find their creations more popular than those who don’t.

User Interfaces for Programming

There is a common belief that interpreted programming languages are easier to use than compiled languages. One
reason for this is that interpreted languages tend to have more runtime checks built into their interpreters.

Another reason is that the edit-compile-run loop is faster. Programming is a trial-and-error process that obviously
accelerates as this loop is tightened up. In addition, studies have shown that fast response to input is crucial for
mainuining the attention span of the user. In other words, the longer your compiler takes, the better the chance that
you will become distracted and loose track of the details of your programming task.

These advantages need not be available only to those with interpreted programming environments; ultra-fast compil-
ers, incremental compilation, and runtime consistency checks can achieve the same results. As the performance of
our machines skyrockets relative to the cost of our attention span, we must recalculate the trade off between getting
answers slowly and getting answers incorrectly.
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Programmers and other scientific users need higher level 1o0ols. 1t is no longer acceptable for us to write a do-loop
to add two vectors, because of the minuscule chance for error in such code, and the added atiention span we must
devote to the extra code every lime we examine it. Using higher-level commands to add vectors and do other
high-level operations not only result in increased programmer productivity but also allow for vector processors and
other optimization schemes to be more readily utilized. In addition, if the statements in your programming language
are higher-level, the penalties for interpreted programming diminish as the ratio between interpreter overhead and
the intended processing falls.

Good User Interface Technology

This section goes over some user interface techniques that will become more and more common as the technology
advances.

Realistic Equation Display

Since the dawn of computing, scientists have been entering equations into computers. Almast always this has been
in a purely textual format. Recently more realistic, two dimensional equation display has been available on graphical
workstations.

Expressions are more difficult to display than simple text. Text, especially in a single fixed-pitch font, grows
lengthwise with each character and only rarely grows in height, and then, only when automatic word-wrap is
enabled. Formulas, on the other hand, can grow and shrink vertically and horizontally with each keystroke as
subscripts, superscripts and fractions change.

The expression is usually represented intemally as a tree. Each node contains coordinates specifying a rectangle
that encloses the expression that the node encloses, in addition to other parameters such as math axis, baseline, font
size, etc. The drawing of an expression usually is a two-step process.

The first pass traverses the tree and calculates the size of each node in the tree. Each node needs the size of each
sub-expression tree; the algorithm is post-order recursive, The sizing algorithm must line up consecutive symbols so
that their math axes line up; in other words, centers of plus and minus signs must be at the same height as fraction
lines.

The sccond pass actually draws each node. The algorithm can be either pre-order or post-order.

Direct Manipulation

The advent of graphical workstations has put a mouse or other graphical input device on everybody’s desk. Un-
fortunately, platforms that have their roots in alphanumerics have had a slow transition to making good use of the
mouse.

The typical workstation has a quarter million to a million pixels on its screen. Each is a valid location for the
mouse. When the user clicks and drags the mouse, he supplies 32 to 40 bits of information to the computer, whereas
each keystroke is only about six bits of information. Clearly, the mouse can be a much faster input device than the
keyboard.

More important, though, is the kind of information it supplies. The mouse almost always is used to point to
something that has been drawn on the screen. As such the available functions can be changed as fast as the screen
can be redrawn. In addition, pertinent objects in the software can be implicated by the user without resorting to
assigning numbers or names to them and forcing the user to type them in.

An example of this is an equation editor. The user can click and drag the mouse and select a sub-expression in an
equation far more easily than ever possible with a keystroke-based mechanism, which usually resorted o describing
the path down a tree that must be taken to find the given sub-expression.

Another example of this is performing symbolic algebra operations by clicking and dragging in Theorist. Selected
sub-expressions can be dragged around on the screen to rearrange equations, and whole equations can be dragged
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1o other equations for substitution. Using an alphanumeric approach, equations would be numbered with arbitrary
labels and the user would type such labels into commands to achieve similar results.

Much richer are the opportunities for direct manipulation of graphs. One of the most common is rotation of a 3D
graph by clicking and “rolling”. Less obvious are some of the functions founa, for instance, in Spyglass View,
where you can modify a color look up table by clicking and dragging along a spectrum displayed along the edge of
a window.

Click-and-drag code is usually implemented in a loop or a set of routines that respond to events that the application
is sent from the windowing system. While the mouse button is held down, the application program must provide
some sort of feedback, called a “‘ghost”, as to what would happen if the mouse were released at the given position.
Sometimes, if the workstation is powerful enough, the action is completely taken care of as the user clicks and
drags, but this is not always practical.

Given the notification that the user is clicking in such a location, on a Macintosh, the code looks like this:

Get current mouse position
Draw Ghost according to mouse position
wvhile (user holds mouse down)
Get current mouse position
if mouse position implies a different ghost,
Undraw old Ghost
Draw new Ghost
end loop
Undraw old Ghost
Perform action, if not canceled

It is always good to provide some way for the user to harmlessly cancel a click-and-drag in the middle, such as
dragging to an illegal location.

On most other windowing platforms, the application writer does not have the luxury of writing his own loop but is
allowed to provide the prelude, the body of the loop, and the post-processing as three separate procedures that are
called by the windowing system. The results are the same although the code is usually less clear.

On workstations that have a simpie one bit deep screen, the ghost is frequently drawn in exclusive-Or mode, so
that it can be undrawn with the same code. An alternative is to save the pixels undemeath the ghost for subsequent
replacement during undrawing.

Automatic Recalculation

One of the most common programs in use today for scientific analysis is the spreadsheet. You type some numbers
into certain cells, and you type in some formulas into other cells. The cells with the formulas will display the results
of the calculations, which use the numbers as inputs. Formulas can be chained endlessly for arbitrarily complicated
calculations. When you change any numbers or formulas, the derived cells are recalculated automatically. If the
calculations are simple, the screen is updated immediately, providing instant feedback to the user.

Many spreadsheets can draw graphics. The graphics are the result of calculations from formulas, and the graphs
are updated automatically after any change is made to any numbers, formulas, or any controls that are found on the
graph itself that the program supplies.

A modification of this can be found in programs such as MathCAD and Theorist. In these programs, the formulas
are more central and therefore are not hidden behind the numbers that are the result of their being calculated. Also,
the formulas are displayed in a realistic, 2D format as formulas are displayed in books. Any change to formulas or
numbers is reflected in the graphs or number displays as quickly as the computer can recalculate the answers.

Obviously, this can be extended to other forms of “calculations” and “formulas™ and “displays”. For instance,
programs exist that display a schematic diagram of an analog circuit. Signals can be fed into the circuit by the user
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and the output observed on software “oscilloscopes”, or the output can be heard when the computer feeds it out of
a DAC and a speaker. The output changes instantly to reflect any changes in setup or input.

Similarly, video image processing or symbolic operations can be performed in this non-procedural way, as long as
some “formula” or recipe for deriving the result is readily available and comprehensible to the user.

The two problems with this technique are:

e Sometimes recalculation is painfully slow.
o Properly retriggering recalculation can be tricky.

The most common way to correctly trigger recalculation is to maintain dependency information, frequendy in a tree
form. For instance, graph A depends upon formula 12 which depends upon formula 47. If formula 47 is changed
by the user, that must trigger the invalidation of formula 12, which in wm triggers the invalidation of graph A.
Generally you have a set of pointers that point in both directions; one direction is used for calculation and the other
for invalidation. These pointers must be kept up to date as the formulas and dependencies change.

The most common way to help recalculation speed is 10 cache intermediate results. For instance, in Theorist, a three-
dimensional graph has two levels of cache. The data cache contains coordinates of points and a three dimensional
description of what is to be drawn. An image cache contains a pure image of the graph. If the window is obscured
by another window and later exposed, only the image cache need be accessed. If the graph is rotated to a different
angle by user command, the image cache is invalidated, forcing a redraw from the data cache, which is still valid.
If the equations change, though, both z are invalidated triggering a complete recalculation.

The more caches there are, the more time can be saved in recalculation. On the other hand, this also makes the
software more complex and uses more memory. The complexity is especially acute; frequently it is simpler io
conservatively invalidate more than is necessary than to perfect a mulii-tiered cache system. Failure to correctly
invalidate is a particularly odious problem.

Conclusion

The scientific computing systems of the future will require more mature user interfaces in order 1o fully utilize the
advanced tools that will be available, in addition 10 having more robust tools available. Almost always these will
involve commercial software packages.
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Abstract

This lecture will provide an introduction to the SENAC problem solving environment by reviewing the advantages
and disadvantages of the language Lisp for the development of high-level features based on the experience of the
Mathematical Software Project at the University of Waikato.

In particular the features of Common Lisp which are advantageous for environment development, the use of foreign
funcuon interfaces for linking to subroutine libraries, the use of interprocess communication for driving graphics
systems, the role of common storage and callbacks, ideas for improved portability and the mtroducuon of parallelism
will be among the more classical topics developed in the context of a application.
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Complex application
of graphical, symbolic and numerical methods
in packages for solving mathematical modeling problems

L.A. Nicolayev, L.A. Krukier, S.A. Zharinov
Rostov State University, USSR

The widespreading of computers and their application field expansion makes it actual the
development of mathematical software for non-experts in mathematical modeling and
programming. One of the main tasks for this aim is a simplicity and visuality of information input
and output with help of the graphical instruments and methods. The symbolic methods usage
for mathematical modeling problems makes it possible to simplify program structure and extend
its flexibility and resources. The effective numerical methods permit computers to solve the
application problems quickly and accurately. Sc graphical, symbolic and numerical methods
complex application for mathematical modeling is essential for software quality improvement.

One of the most popular approaches for computer mathematical modeling is development
of intellectual application program packages intended for the solutions of the problems from
certain field of human activity. The modern packages are based on the friendly user*s interface
adapted to different user's knowledge levels and include some elements of expert systems and
knowledge bases.

In the framework of this approach PACEPACK (Parallei Algorithms for Computing
Elliptic PACKage) package is developed in Computing Center of Rostov University. The
package is a software system for solving two-dimensional elliptic boundary value problems with
arbitrary boundary conditions and is realized on complex PC - multiprocessor. The package
structure in general is similar to ELLPACK [1] but has some essential features. Instead of
high-level problem statement language in ELLPACK there is a menu with equation templates
set, domain and boundary input is accomplished by scanner or mouse device, finite differences
approximations of differential operator are performed by computer algebra system, solution
module choice and output representation form are controlled by expert system. These
peculiarities improve package abilities and make it easy of access for a wide variety of users.

Boundary value problems solving includes two main step. The first step is the partial
differential equation and domain preparation, and the second one is numerical solving of
resulting linear algebra equations system. On the first step there is a problem specification
dialogue so it seems to be reasonable to perform it on a personal computer. For most real world
problems resulting linear algebra equations system is very complicated and fast processing is
required to solve it. So the second step is performed on multiprocessor.

In order to describe PACEPACK architecture let us consider the process of the solving
elliptic boundary problem (fig. 1) using one of the methods of discretization.
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The elliptic equation in two dimensions domain Q (the first stage) has the form

(@Ux)x + (bUx)y + (cUy)x + (dUy)y + (eU)x + (fU)y+nU =g
with the following boundary conditions on Q2

p1Ux+p2Uy+qU=r

where coefficients in (1) and (2) are the function of x, y. Unknown U and functions g, r may
be vectors; a, b, ¢, d, e, f, n, p1, p2, @ may be matrixes, but the elliptic conditions must be
contended in any cases. The second stage of the task is a construction of the grid in domain Q
and difference approximation of the equation (1) and boundary conditions (2). Then difference
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scheme on the grid is produced. Indexing of nodes in the grid (the third stage) gives the structure
of the linear system of equations (the forth stage), and solution the system is the fifth stage.

The relatively indepedence of the stages for fixing input-output gives the opportunity to
utilize the modules, which were developed and tested before. This approach makes it possible
to construct the packages for solving an elliptic problem quickly enough. The usage of a personal
computer with the multiprocessor board gives an opportunity to make an effective utilization of
rich software which was produced for PC.

Each of these stages for solving a problem can be realized as a block of the package. Now
we consider these blocks. Let us examining ones in details.

Problem description block. The block includes tools to input information of the problem
into computer, that is software tools have to grasp, recognize and analyze input information.
The block is the most informative one because of it transfers a lot of the problem into computer.
Input information is divided with the following manner: control information to run the problem
and information of data problem. We must point out that information of data problem initiates
the part of control information. Transferring of the problem into computer is executed in
dialogue manner. User has the opportunity to return into the block after any block of the package
finished its work to correct the program without its recompiling.

The most complicated part of the block is the program which forms a computer
representation of the complex geometrv domain with cuts and holes. The program produces a
bound configuration with analvtical methods and point-wise method.

Grid configuration block. This block transforms continuous space into set of regular
nodes, which connected with arrays of coefficients, unknowns, right parts. Initial and boundary
conditions and partial derivatives should be approximated. The grid construction in regular
domain isn’t a complicated problem. But this procedure in irregular domain is a complex one. It
has to be realized on multicomputer architecture if adaptive grid will be constructed.

In order to match grid configuration on monitor screen with its image in computer memory
another problem arises. The program module is developed to fulfil correction of a grid during
construction period and after the grid is constructed. The module uses information of domain
geometry from the previous block and can interact with user by means of dialogue. The following
analyse with the help of the expert system makes an opportunity to choose the constructing grid
algorithm. Output information of the block consists of grid point coordinates (inner and outer
points of boundary) and array of boundary points.

These two blocks were fulfilled as a separate program file using PASCAL 5.0. The part
of the second block for grid construction was developed by using the package GRAPFHIX
TOOL BOX 4.0.

Block of approximation of equation. The block explores algorithm of finite differences
approximation of linear operator on the base of undefined coefficients method. Equation (1)
is replaced by
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where U(x +ih, y+jh) is function approximation on the grid, Cj,j - coefficients to be
defined, T - some template on the grid, h - step of the grid.

Coefficients Cj,j are defined by power expansion of expression (3) and comparing them
with exprassions (1), (2). To solve the resulting system of linear equations original method is
used.

The approach is implemented on the base of LISP with help of some elements of the
computer algebra system mu-MATH. User has the possibility to control template choice and
approximation precision through dialog.

Block of linear algebra system composition. The block determines the order in array of
grid points of the domain and as a result of the procedure is a spare matrix of linear system. The
block isn’t a significant part of the package if user solves the problem on single processor
computer. Algorithms included into the block are used to solve the problem with finite-element
method which reduces the problem into linear system with any sparse matrix [2]. A most parts
of algorithms in ELLPACK package are developed to make band of linear system matrix as tight
as possible.

The block becomes significant part of the package when multiprocessor computer is being
used for solving the problem. The main object of the block is a matching matrix structure to the
computer architecture [3,4].

Block for solving linear system equations. Input information of the block is matrix
characteristics (positive or negative form, self-adjoint structure, coefficients and etc.) and output
of the block is a vector of unknowns. The user can point out an advisable method of solving
linear algebra system: iterating or direct one. Algorithms which are realized in the block can run
on a single or multi-processor. Then the expert system uses information of the multi-processor
architecture to form matrix structure of the system which is matched to the architecture. We
mention to the module analysis of the algorithms [5] where it was said that the efficiency of the
parallel algorithms depended on the pseudo-residual method of calculations.

Output block. The solution of linear equation system is passed from multi-processor to
PC, where information about grid and nodes indexing were using is stored. The complex analyze
of the data gives opportunity to construct graphics of the behaviour of the solution in the domain
on screen or printer.

So complex application of graphical, symbolic and numerical methods in packages makes
it possible to solve in direct manner many complicated problems of designing and exploiting
software for science and applications.

283




References:

1. Rice J.R., Boisvert R.F. Solving Elliptic Problems Using ELLPACK - Berlin, Springer
Verl, 1985.

2. Reid J.K. Algebraic aspects of finite-element solution Comp. Phys Rept, 1987, 6, N
1-6, p. 385-414.

3. Adams L.M. Iterating Algorithms for Large Sparse Linear Systems on Parallel
Computers. NASA Contractor Report, N 166027, 1982.

4. Liu J.W. Reordering-Sparse matrixes for paralle! elimination Paral. Comp., 1989, V
II, N I, p. 73-91.

5. Krukier L.A., Simonovich 1.V. Computing Systems and Algorithms, Rostov University,
USSR, 1983 (on Russian).

284



